Homotopy invariance of relative eta-invariants and -algebra -theory

Author:
Navin Keswani

Journal:
Electron. Res. Announc. Amer. Math. Soc. **4** (1998), 18-26

MSC (1991):
Primary 19K56

DOI:
https://doi.org/10.1090/S1079-6762-98-00042-0

Published electronically:
April 1, 1998

MathSciNet review:
1613055

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a close cousin of a theorem of Weinberger about the homotopy invariance of certain relative eta-invariants by placing the problem in operator -theory. The main idea is to use a homotopy equivalence to construct a loop of invertible operators whose ``winding number" is related to eta-invariants. The Baum-Connes conjecture and a technique motivated by the Atiyah-Singer index theorem provides us with the invariance of this winding number under twistings by finite-dimensional unitary representations of .

**[APS1]**M. Atiyah, V. K. Patodi, and I. Singer,*Spectral asymmetry and Riemannian geometry*. I, Math. Proc. Camb. Phil. Soc.**77**(1975), 43-69. MR**53:1655a****[APS2]**-,*Spectral asymmetry and Riemannian geometry*. II, Math. Proc. Camb. Phil. Soc.**78**(1975), 405-432. MR**53:1655b****[B]**B. Blackadar,*K-theory for operator algebras*, MSRI Publications, vol. 5, Springer-Verlag, New York, 1986. MR**88g:46082****[BCH]**P. Baum, A. Connes, and N. Higson,*Classifying space for proper -actions and K-theory of group -algebras*, Proceedings of a Special Session on -algebras, Contemporary Mathematics, volume 167, American Mathematical Society, Providence, RI, 1994, pp. 241-291. MR**96c:46070****[BD]**P. Baum and R. Douglas,*-homology and index theory*, Proc. Symp. Pure Math.**38**(1982), 117-173. MR**84d:58075****[G]**P. Gilkey,*Invariance theory, the heat equation, and the Atiyah-Singer index theorem*, 2nd ed., CRC Press, 1995. MR**98b:58156****[HS]**P. de la Harpe and G. Skandalis,*Déterminant associé à une trace sur une algèbre de Banach*, Ann. Inst. Fourier (Grenoble)**34**(1984), 241-260. MR**87i:46146a****[HK]**N. Higson and G. Kasparov,*Operator -theory for groups which act properly and isometrically on Hilbert space*, ERA Amer. Math. Soc.**3**(1997), 131-142. CMP**98:05****[HR]**N. Higson and J. Roe,*Mapping surgery to analysis*, Preprint.**[K1]**G. Kasparov,*Topological invariants of elliptic operators. I: K-homology*, Math. USSR Izv.**9**(1975), 751-792. MR**58:7603****[K2]**-,*Equivariant -theory and the Novikov conjecture*, Inven. Math.**91**(1988), 147-201. MR**88j:58123****[KM]**J. Kaminker and J. Miller,*Homotopy invariance of the analytic index of signature operators over -algebras*, J. Operator Theory**14**(1985), 113-127. MR**87b:58082****[Kes]**N. Keswani,*Homotopy invariance of relative eta-invariants and -algebra -theory*, Ph.D. Thesis, 1997, University of Maryland at College Park.**[M]**V. Mathai,*On the homotopy invariance of reduced eta and other signature type invariants*, Preprint.**[N]**W. Neumann,*Signature related invariants of manifolds. I: monodromy and -invariants*, Topology**18**(1979), 147-172. MR**80k:57048****[deR]**G. de Rham, S. Maumary, and M. A. Kervaire,*Torsion et type simple d'homotopie*, Lecture Notes in Mathematics, vol. 48, Springer-Verlag, 1967. MR**36:5943****[R]**J. Roe,*Elliptic operators, topology, and asymptotic methods*, Longman Scientific & Technical, Harlow, Essex, England, and Wiley, New York, 1988. MR**89j:58126****[Ros1]**J. Rosenberg,*Analytic Novikov for topologists*, Novikov Conjectures, Index Theorems and Rigidity, vol.1 (S. Ferry, A. Ranicki, and J. Rosenberg, eds.), London Math. Soc. Lecture Notes, vol. 226, Cambrige Univ. Press, Cambridge, 1995, pp. 338-372. MR**97b:58138****[Ros2]**-,*Recent progress in algebraic -theory and its relationship with topology and analysis*, Lecture notes prepared for the Joint Summer Research Conference on Algebraic -theory, Seattle, July 1997, -theory preprint server.**[W]**S. Weinberger,*Homotopy invariance of eta invariants*, Proc. Nat. Acad. Sci.**85**(1988), 5362-5365. MR**90a:58168**

Retrieve articles in *Electronic Research Announcements of the American Mathematical Society*
with MSC (1991):
19K56

Retrieve articles in all journals with MSC (1991): 19K56

Additional Information

**Navin Keswani**

Affiliation:
Department of Mathematics, The Pennsylvania State University, University Park, PA 16802

Email:
navin@math.psu.edu

DOI:
https://doi.org/10.1090/S1079-6762-98-00042-0

Keywords:
Eta-invariants,
$K$-theory

Received by editor(s):
January 28, 1998

Published electronically:
April 1, 1998

Additional Notes:
The author would like to thank Nigel Higson for his guidance with this project.

Communicated by:
Masamichi Takesaki

Article copyright:
© Copyright 1998
American Mathematical Society