Orthogonal harmonic analysis of fractal measures
Authors:
Palle E. T. Jorgensen and Steen Pedersen
Journal:
Electron. Res. Announc. Amer. Math. Soc. 4 (1998), 3542
MSC (1991):
Primary 28A75, 42B10, 42C05; Secondary 47C05, 46L55
Published electronically:
May 5, 1998
MathSciNet review:
1618687
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We show that certain iteration systems lead to fractal measures admitting an exact orthogonal harmonic analysis.
 [BS95]
G. Björck and B. Saffari, New classes of finite unimodular sequences with unimodular Fourier transforms. Circulant Hadamard matrices with complex entries, C. R. Acad. Sci. Paris, Série 1, 320 (1995), 319324. CMP 95:09
 [Fri87]
Jürgen
Friedrich, On first order partial differential operators on bounded
regions of the plane, Math. Nachr. 131 (1987),
33–47. MR
908797 (88j:47062), http://dx.doi.org/10.1002/mana.19871310104
 [Fug74]
Bent
Fuglede, Commuting selfadjoint partial differential operators and
a group theoretic problem, J. Functional Analysis 16
(1974), 101–121. MR 0470754
(57 #10500)
 [Haa95]
U. Haagerup, Orthogonal maximal Abelian *subalgebras of the matrices and cyclic roots, preprint, 1995, 29 pp.
 [IP98]
A. Iosevich and S. Pedersen, Spectral and tiling properties of the unit cube, preprint, 1998.
 [Jor82]
Palle
E. T. Jørgensen, Spectral theory of finite volume domains in
𝑅ⁿ, Adv. in Math. 44 (1982),
no. 2, 105–120. MR 658536
(84k:47024), http://dx.doi.org/10.1016/00018708(82)900019
 [JP92]
Palle
E. T. Jorgensen and Steen
Pedersen, Spectral theory for Borel sets in 𝑅ⁿ of
finite measure, J. Funct. Anal. 107 (1992),
no. 1, 72–104. MR 1165867
(93k:47005), http://dx.doi.org/10.1016/00221236(92)90101N
 [JP94]
Palle
E. T. Jorgensen and Steen
Pedersen, Harmonic analysis and fractal limitmeasures induced by
representations of a certain 𝐶*algebra, J. Funct. Anal.
125 (1994), no. 1, 90–110. MR 1297015
(95i:47067), http://dx.doi.org/10.1006/jfan.1994.1118
 [JP96]
P.
E. T. Jorgensen and S.
Pedersen, Harmonic analysis of fractal measures, Constr.
Approx. 12 (1996), no. 1, 1–30. MR 1389918
(97c:46091), http://dx.doi.org/10.1007/s003659900001
 [JP97a]
P. E. T. Jorgensen and S. Pedersen, Spectral pairs in Cartesian coordinates, J. Fourier Anal. Appl., to appear.
 [JP97b]
P. E. T. Jorgensen and S. Pedersen, Dense analytic subspaces in fractal spaces, J. Anal. Math., to appear.
 [KL93]
Jun
Kigami and Michel
L. Lapidus, Weyl’s problem for the spectral distribution of
Laplacians on p.c.f.\ selfsimilar fractals, Comm. Math. Phys.
158 (1993), no. 1, 93–125. MR 1243717
(94m:58225)
 [KL96]
Mihail
N. Kolountzakis and Jeffrey
C. Lagarias, Structure of tilings of the line by a function,
Duke Math. J. 82 (1996), no. 3, 653–678. MR 1387688
(97d:11124), http://dx.doi.org/10.1215/S0012709496082277
 [LRW98]
J. C. Lagarias, J. A. Reed, and Y. Wang, Orthonormal bases of exponentials for the cube, preprint, 1998.
 [LW97]
Jeffrey
C. Lagarias and Yang
Wang, Spectral sets and factorizations of finite abelian
groups, J. Funct. Anal. 145 (1997), no. 1,
73–98. MR
1442160 (98b:47011b), http://dx.doi.org/10.1006/jfan.1996.3008
 [Ped87]
Steen
Pedersen, Spectral theory of commuting selfadjoint partial
differential operators, J. Funct. Anal. 73 (1987),
no. 1, 122–134. MR 890659
(89m:35163), http://dx.doi.org/10.1016/00221236(87)900619
 [Ped96]
Steen
Pedersen, Spectral sets whose spectrum is a lattice with a
base, J. Funct. Anal. 141 (1996), no. 2,
496–509. MR 1418517
(98b:47011a), http://dx.doi.org/10.1006/jfan.1996.0139
 [Ped97]
S. Pedersen, Fourier series and geometry, preprint, 1997.
 [PW97]
S. Pedersen and Y. Wang, Spectral sets, translation tiles and characteristic polynomials, preprint, 1997.
 [Str94]
Robert
S. Strichartz, Selfsimilarity in harmonic analysis, J.
Fourier Anal. Appl. 1 (1994), no. 1, 1–37. MR 1307067
(96c:42002), http://dx.doi.org/10.1007/s000410014001z
 [BS95]
 G. Björck and B. Saffari, New classes of finite unimodular sequences with unimodular Fourier transforms. Circulant Hadamard matrices with complex entries, C. R. Acad. Sci. Paris, Série 1, 320 (1995), 319324. CMP 95:09
 [Fri87]
 J. Friedrich, On first order partial differential operators on bounded regions of the plane, Math. Nachr. 131 (1987), 3347. MR 88j:47062
 [Fug74]
 B. Fuglede, Commuting selfadjoint partial differential operators and a group theoretic problem, J. Funct. Anal. 16 (1974), 101121. MR 57:10500
 [Haa95]
 U. Haagerup, Orthogonal maximal Abelian *subalgebras of the matrices and cyclic roots, preprint, 1995, 29 pp.
 [IP98]
 A. Iosevich and S. Pedersen, Spectral and tiling properties of the unit cube, preprint, 1998.
 [Jor82]
 P. E. T. Jorgensen, Spectral theory of finite volume domains in , Adv. Math. 44 (1982), 105120. MR 84k:47024
 [JP92]
 P. E. T. Jorgensen and S. Pedersen, Spectral theory for Borel sets in of finite measure, J. Funct. Anal. 107 (1992), 72104. MR 93k:47005
 [JP94]
 P. E. T. Jorgensen and S. Pedersen, Harmonic analysis and fractal limitmeasures induced by representations of a certain algebra, J. Funct. Anal. 125 (1994), 90110. MR 95i:47067
 [JP96]
 P. E. T. Jorgensen and S. Pedersen, Harmonic analysis of fractal measures, Constr. Approx. 12 (1996), 130. MR 97c:46091
 [JP97a]
 P. E. T. Jorgensen and S. Pedersen, Spectral pairs in Cartesian coordinates, J. Fourier Anal. Appl., to appear.
 [JP97b]
 P. E. T. Jorgensen and S. Pedersen, Dense analytic subspaces in fractal spaces, J. Anal. Math., to appear.
 [KL93]
 J. Kigami and M. Lapidus, Weyl's problem for the spectral distribution of Laplacians on p.c.f. selfsimilar sets, Commun. Math. Phys. 158 (1993), 93125. MR 94m:58225
 [KL96]
 M. N. Kolountzakis and J. C. Lagarias, Structure of tilings of the line by a function, Duke Math. J. 82 (1996), 653678. MR 97d:11124
 [LRW98]
 J. C. Lagarias, J. A. Reed, and Y. Wang, Orthonormal bases of exponentials for the cube, preprint, 1998.
 [LW97]
 J. C. Lagarias and Y. Wang, Spectral sets and factorizations of finite Abelian groups, J. Funct. Anal. 145 (1997), 7398. MR 98b:47011b
 [Ped87]
 S. Pedersen, Spectral theory of commuting selfadjoint partial differential operators, J. Funct. Anal. 73 (1987), 122134. MR 89m:35163
 [Ped96]
 S. Pedersen, Spectral sets whose spectrum is a lattice with a base, J. Funct. Anal. 141 (1996), 496509. MR 98b:47011a
 [Ped97]
 S. Pedersen, Fourier series and geometry, preprint, 1997.
 [PW97]
 S. Pedersen and Y. Wang, Spectral sets, translation tiles and characteristic polynomials, preprint, 1997.
 [Str94]
 R. S. Strichartz, Selfsimilarity in harmonic analysis, J. Fourier Anal. Appl. 1 (1994), 137. MR 96c:42002
Similar Articles
Retrieve articles in Electronic Research Announcements of the American Mathematical Society
with MSC (1991):
28A75,
42B10,
42C05,
47C05,
46L55
Retrieve articles in all journals
with MSC (1991):
28A75,
42B10,
42C05,
47C05,
46L55
Additional Information
Palle E. T. Jorgensen
Affiliation:
Department of Mathematics, University of Iowa, Iowa City, IA 52242
Email:
jorgen@math.uiowa.edu
Steen Pedersen
Affiliation:
Department of Mathematics, Wright State University, Dayton, OH 45435
Email:
steen@math.wright.edu
DOI:
http://dx.doi.org/10.1090/S1079676298000444
PII:
S 10796762(98)000444
Keywords:
Spectral pair,
tiling,
Fourier basis,
selfsimilar measure,
fractal,
affine iteration,
spectral resolution,
Hilbert space
Received by editor(s):
October 13, 1997
Published electronically:
May 5, 1998
Communicated by:
Yitzhak Katznelson
Article copyright:
© Copyright 1998
American Mathematical Society
