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Abstract. We show that certain iteration systems lead to fractal measures
admitting an exact orthogonal harmonic analysis.

Overview

We study properties of pairs of Borel measures on Rd simultaneously generalizing
Fourier series and the Fourier transform. We show that certain fractal measures
fall within the class of measures admitting generalized Fourier series.

The class of fractal measures considered in this paper are obtained from an
affine iteration construction leading to self-affine measures µ with support in Rd.
The affine maps are determined by a given expansive d × d matrix and a finite
set of translation vectors. We show that the corresponding L2-space L2(µ) has an
orthonormal basis of exponentials ei2π λ·x, indexed by vectors λ in Rd, provided
certain geometric conditions hold for the affine system.

1. Introduction

1.1. Segal’s question. Let Ω be a Lebesgue measurable subset of d-dimensional
Euclidean space Rd, d ≥ 1. Let L2(mΩ) be the corresponding Hilbert space of
square integrable functions with the inner product

〈f, g〉 :=
∫

f(x) g(x) dmΩ(x)

where m denotes Lebesgue measure on Rd and mΩ(∆) := m(Ω ∩ ∆) is Lebesgue
measure restricted to the set Ω. Motivated by a question raised by I. E. Segal,
and a paper [Fug74] by B. Fuglede the problem of deciding for which Ω of finite
measure, the space L2(mΩ) admits an orthogonal basis {eλ(x) := exp(i2π λ · x) :
λ ∈ Λ} of exponentials, has been studied; see, e.g., [Fug74], [Jor82], [Ped87], [JP92],
[Ped96], [LW97]. It is known [Fug74], [Ped87] that a connected open set Ω with
finite measure admits an orthogonal basis of exponentials if and only if there exists
commuting (in the sense of commuting spectral projections) self-adjoint extension
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operators Hj , 1 ≤ j ≤ d of the minimal partial derivative operators −i ∂
∂xj

acting
on C∞

c (Ω), the space of all smooth functions compactly supported in Ω.
When Ω = [0, 1]d is a cube in Rd, then the class of all possible commuting

extension operators was the focus of attension in [JP97a]; the results are particularly
satisfying for d ≤ 3. Domains Ω admitting extension operators satisfying a weaker
form of commutativity were studied by J. Friedrich [Fri87], in the case d = 2.

1.2. Fuglede’s Conjecture. Let Ω be a Lebesgue measurable subset of Rd with
finite measure. If there exists a set Λ such that {eλ : λ ∈ Λ} is an orthogonal basis
for L2(mΩ), then we say that Ω is a spectral set, Λ is a spectrum, and (Ω, Λ) is a
spectral pair. If there exists a set T so that up to sets of measure zero {Ω+t : t ∈ T }
is a partition of Rd, then we say that Ω is a tile and T is a tiling set.

Conjecture 1.1 (Spectral Set Conjecture [Fug74]). Let Ω be a set of finite non-
zero measure. Then Ω is a spectral set if and only if Ω is a tile.

This conjecture is open in both directions even for d = 1. A set S which is the
affine image of a set of the form Zd+A for some finite set A so that (A−A)∩Zd = ∅
is called periodic or a lattice with a base.

Conjecture 1.2 (Periodic Spectral Set Conjecture [Ped97]). Let Ω be a set of fini-
te non-zero measure. Then Ω is a spectral set admitting a periodic spectrum if and
only if Ω is a tile admitting a periodic tiling set.

It is known [Fug74], [Jor82], [Ped87] that Ω is a spectral set with spectrum Zd

if and only if Ω is a tile with tiling set Zd. In the papers [Ped96] and [LW97] the
Periodic Spectral Set Conjecture is reduced to certain questions about finite subsets
of the integer lattice Zd. For d = 1 some progress towards a resolution of these
questions is made in [PW97]. These results support the view that certain specific
classes of spectra correspond to certain corresponding classes of tiling sets. This is
further confirmed by some results in [JP97a], where we show that every periodic
spectrum for the cube Ω = [0, 1]d is also a tiling set for the cube, and conversely
that any periodic tiling set for the cube is a spectrum for the cube. Very recently
the periodicity hypothesis in the cube result has been removed [IP98], [LRW98].

The results mentioned in the following will be established in a series of papers
by the co-authors; the first two papers in this series are [JP97a] and [JP97b].

2. Pairs of measures

2.1. New pairs from old pairs. While studying the problems described in Sec-
tion 1 it turned out to be necessary to study spectral pairs in more general sit-
uations. For these reasons we introduced in [JP97a] the following more general
formulation. Let µ and ν be Borel measures on Rd. We say that (µ, ν) is a spectral
pair if the map

Ff(ξ) :=
∫

f(x) eξ(x) dµ(x)

defined for f ∈ L1 ∩ L2(µ), extends by continuity to an isometric isomorphism
mapping L2(µ) onto L2(ν). It was shown in [Ped87] that if µ is the restriction of
Lebesgue measure to a connected open set of infinite measure, then the connection
to commuting self-adjoint extensions of the directional derivatives described in Sec-
tion 1 remains valid. One of the nice features of the more general definition of a
spectral pair is that if (µ, ν) is a spectral pair, then so is (ν, µ).
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Recall that the convolution µ := µ1 ∗ µ2 of Borel measures µj on Rd is given by∫
Rd

f(x) dµ(x) =
∫

Rd

∫
Rd

f(x1 + x2) dµ1(x1)dµ2(x2).

We will call a convolution µ1∗µ2 non-overlapping if the map f(x1, x2) := g(x1+x2)
determines an isometric isomorphism g → f mapping L2(µ1 ∗µ2) onto L2(µ1×µ2).
The following result allows us to construct a large class of spectral pairs.

Theorem 2.1 (Convolution Theorem). Suppose (µj , νj) are spectral pairs in Rd.
If µ1 ∗ µ2, ν1 ∗ ν2 are non-overlapping and

(µ1 × ν2){(x1, λ2) : x1λ2 6∈ Z} = 0,

then (µ1 ∗ µ2, ν1 ∗ ν2) is a spectral pair.

This result generalizes results from [JP92], [JP94], and [LW97]. All known ex-
amples of spectral pairs can be generated using this result and multiplicative (see
Section 4 for a definition) spectral pairs.

2.2. Which measures are possible? It turns out that the class of measures that
can be part of a spectral pair is fairly limited; for example, we have

Theorem 2.2 (Uncertainty Principle). Suppose (µ, ν) is a spectral pair. Let f ∈
L2(µ), f 6= 0, and A, B ⊂ Rd. If ‖f − χAf‖µ ≤ ε and ‖Ff − χBFf‖ν ≤ δ, then
(1− ε− δ)2 ≤ µ(A)ν(B).

Theorem 2.3 (Local Translation Invariance). Suppose (µ, ν) is a spectral pair and
t ∈ Rd. If O and O + t are subsets of the support of µ, then µ(O) = µ(O + t).

M. N. Kolountzakis and J. C. Lagarias in [KL96] discuss tilings of the real line
R by a function. Some given measurable function f tiles the real line with tile set
T if there exists a constant c such that∑

t∈T

f(x + t) = c

for almost every x ∈ R. It follows from Local Translation Invariance that for such
a function to come from a spectral pair it must be a multiple of the characteristic
function of some set. In particular, a natural but naive generalization of the Spectral
Set Conjecture to the setting of [KL96] is false.

The following result establishes a direct connection to the spectral pairs discussed
in Section 1.

Theorem 2.4. Suppose (µ, ν) is a spectral pair. If µ(Rd) < ∞, then ν is a counting
measure with uniformly discrete support.

3. Fractal measures

3.1. Dual iteration systems. Consider a triplet (R, B, L) such that R is an
expansive d× d matrix with real entries, and B and L are subsets of Rd so that

N := #B = #L;(3.1)

Rnb · l ∈ Z, for any n ∈ N, b ∈ B, l ∈ L;(3.2)

HB,L := N−1/2
(
ei2πb·l)

b∈B,l∈L
is a unitary N ×N matrix.(3.3)
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We introduce two dynamical systems,

σb(x) := R−1x + b,

τl(x) := R∗x + l,

and the corresponding “attractors”,

Xσ :=

{ ∞∑
k=0

R−kbk : bk ∈ B

}

and

L = Xτ :=

{
n∑

k=0

R∗klk : n ∈ N, lk ∈ L

}
.(3.4)

The set Xσ is the support of the unique probability measure solving the equation

µ = N−1
∑
b∈B

µ ◦ σ−1
b .(3.5)

Our goal is to show that under appropriate assumptions the exponentials {eλ :
λ ∈ L} form an orthogonal basis for L2(µ). It follows from the assumptions (3.1)–
(3.3) on (R, B, L) that the exponentials (eλ)λ∈L are orthogonal, so the question is
whether or not they span all of L2(µ). If we set

χB(t) := N−1
∑
b∈B

eb(t),(3.6)

then expansiveness of R implies that we have an explicit formula for the Fourier
transform of µ,

µ̂(t) :=
∫

et(x) dµ(x) =
∞∏

k=0

χB(R∗−kt),(3.7)

the convergence being uniform on bounded subsets of Rd. To facilitate the discus-
sion we introduce the function

Q(t) :=
∑
λ∈L

|µ̂(t− λ)|2 , t ∈ Rd,

and the operator C given by

(Cq) (t) :=
∑
l∈L

|χB(t− l)|2 q(ρl(t))(3.8)

where ρl(x) := R∗−1(x− l). The attractor

Xρ :=

{ ∞∑
k=1

−R∗−klk : lk ∈ L

}
(3.9)

corresponding to the system of ρl’s will be used below.
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3.2. Orthogonal bases. Let H2(L) denote the subspace of L2(µ) spanned by the
orthonormal set {eλ : λ ∈ L}. Any et, t ∈ Cd, is in L2(µ), so H2(L) is a subspace
of L2(µ). We will show that H2(L) = L2(µ) for certain systems (R, B, L) satisfying
(3.1)–(3.3).

Let Y denote the convex hull of the attractor Xρ given by (3.9), let ‖q‖∞ :=
supy∈Y |q(y)| and

‖q‖Y,∞ := ‖|∇q|2‖∞(3.10)

where |z|2 :=
(∑d

j=1 |zj|2
)1/2

is the usual Hilbert norm on Cd. We begin by
showing that, if the operator norm of C acting on a suitable set of smooth functions
is less than one, then µ has the basis property.

Theorem 3.1. Let (R, B, L) be a system in Rd satisfying (3.1)–(3.3), 0 ∈ L. Let C
be the operator given by (3.8), let Y denote the convex hull of the attractor Xρ given
by (3.9), and let ‖q‖Y,∞ be given by (3.10). Suppose L spans Rd; if there exists
γ < 1 so that ‖Cq‖Y,∞ ≤ γ ‖q‖Y,∞ for all q in a set of C1-functions containing
1−Q, then H2(L) = L2(µ).

The following result allows us to compute an operator norm bound for C in
terms of the data (R, B, L) in a fairly straightforward manner.

Theorem 3.2. Let (R, B, L) be a system in Rd satisfying (3.1)–(3.3), 0 ∈ L. Let
C be the operator given by (3.8), and let Y denote the convex hull of the attractor
Xρ given by (3.9). If ‖q‖Y,∞ is given by (3.10) and

β := 2π diam(B) max
b,b′∈B

l∈L

‖sin(2π(b− b′)(· − l))‖∞ ,

then we have

‖Cq‖Y,∞ ≤
[
(N − 1)2 N−1β

∥∥R−1
∥∥

op
max
l∈L

|l|2 +
∥∥R−1

∥∥
hs

]
‖q‖Y,∞ ,

for any C1-function q such that q(0) = 0. Here ‖T ‖op is the operator norm and

‖T ‖hs :=
(∑d

j,k=1 |tj,k|2
)1/2

is the Hilbert-Schmidt norm of a d× d matrix T .

As a consequence of Theorem 3.1 and Theorem 3.2 we have

Corollary 3.3. Let (R, B, L) satisfy (3.1)–(3.3) and for r ∈ N let

Lr :=

{
n∑

k=0

(rR∗)k
lk : n ∈ N, lk ∈ L

}
,

and let µr be the probability measure solving

µr = N−1
∑
b∈B

µr ◦ σ−1
r,b

where σr,b(x) := (rR)−1
x + b. If L spans Rd and 0 ∈ L, then {eλ : λ ∈ Lr} is an

orthonormal basis for L2(µr) provided r is sufficiently large.

R. S. Strichartz obtained an asymptotic harmonic analysis for the class of measur-
es considered in this paper; see [Str94] for a survey of some of Strichartz’s work on
self-similarity in harmonic analysis.
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4. Applications

4.1. The Hardy space connection. One way to construct systems (R, B, L)
satisfying (3.1)–(3.3) is to pick R, B and L so that

R ∈ Md(Z), RB ⊂ Zd, L ⊂ Zd.(4.1)

In fact (4.1) implies (3.2) since Rnb · l = Rb ·R∗(n−1)l for n = 1, 2, 3, . . . . The only
condition that is hard to satisfy is (3.3). This condition is notoriously difficult to
study; for example, it is not known which matrices with entries in the unit circle
satisfy (3.3) for N = 7; see e.g. [Haa95], [BS95] for some progress in the study
of (3.3). The condition (4.1) is closely related to a condition used in the study of
certain multi-dimensional wavelets. Some properties of systems (R, B, L) satisfying
(3.1), (4.1), and (3.3) were established in [JP96].

If (R, B, L) satisfies (3.1), (4.1), and (3.3) and z ∈ Zd, then (R, B, Lz) also
satisfies (3.1), (4.1), and (3.3), where Lz := L + z = {l + z : l ∈ L}. So we may
often assume that L ⊂ Nd. Therefore, if R has non-negative integer entries, we
will often end up with {eλ : λ ∈ L} being an orthonormal basis for L2(µ) and each
element in L only having non-negative coordinates. This is an interesting situation
because the basis property leads to

f =
∑
λ∈L

〈eλ | f〉µ eλ

for f ∈ L2(µ), so setting zj := ei2πxj we see that

f(x) =
∑
λ∈L

〈eλ | f〉µ zλ

where zλ :=
∏d

k=1 zλk

k ; it follows that f(x), x ∈ Xσ, gives the boundary values of
a function analytic in the polydisc {z ∈ Cd : |zj | < 1}. Hence our construction
shows that many fractal L2-spaces are Hardy spaces. This is in sharp contrast to
the Lebesgue spaces; for example, if m[0,1] is Lebesgue measure restricted to the
unit interval [0, 1], then (essentially) the only set Λ such that {eλ : λ ∈ Λ} is an
orthonormal basis for L2(m[0,1]) is Λ = Z, and the corresponding analytic subspace
spanned by {eλ : λ ∈ N0} is far from being equal to L2(m[0,1]). Note that m[0,1] = µ
if R = 2, B = {0, 1/2}, and L = {0, 1}.

4.2. First order operators. Let (Ut)t∈R be a one-parameter group of unitary
operators on some L2-space L2(µ). We say that Ut acts multiplicatively, if

Ut(fg) = (Utf)(Utg)

for all t ∈ R and all f , g ∈ L2 ∩ L∞(µ).
Given a probability measure admitting an orthogonal basis {eλ : λ ∈ Λ} one can

define commuting extension operators Hj by setting

Hjeλ := λjeλ

for λ ∈ Λ. By results mentioned in Section 1 it is reasonable to think of Hj as
an “extension” of −i ∂

∂xj
. Suppose further that µ is a purely singular continuous

measure generated as in Section 3. One can adapt methods from [JP92] to show
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that none of the Hj ’s can satisfy Leibniz’s rule, in the sense that none of the unitary
groups (Uj,t)t∈R, given by

Uj,t := exp(i2πHjt),

acts multiplicatively. A spectral pair is called multiplicative if the unitary groups
(Uj,t)t∈R act multiplicatively. We may construct a Laplace operator ∆ by setting

−∆ := H2
1 + · · ·+ H2

d .

This way of constructing a Laplace operator on a fractal complements the construc-
tion considered, for example, by J. Kigami and M. Lapidus [KL93].

4.3. Examples. Using Theorem 3.2, Theorem 3.1, and equation (3.7) one can
prove the following result.

Theorem 4.1. Suppose d = 1, N = 2, B = {0, a}, with a ∈ R \ {0}, R is an
integer with |R| ≥ 2, and µ is given by (3.5). If R is odd, then L2(µ) does not have
a basis of exponentials for any a ∈ R \ {0}. If R is even and |R| ≥ 4, then L2(µ)
has a basis of exponentials for any a ∈ R \ {0}.

Using the Convolution Theorem (Theorem 2.1) and Theorem 4.1 one can verify
the following example.

Example 4.2. Let µ0 be the probability measure solving (3.5) when R = 4 and
B = {0, 1/2}. Let L = {0, 1} and let L be given by (3.4). Set Ω := [0, 1] + L. If

µ(∆) := m(∆ ∩ Ω)

and

ν(∆) :=
∞∑

k=−∞
µ0(∆ + k),

then (µ, ν) is a spectral pair, and Ω is a tile with tiling set −2L.

This is an example of a spectral set of infinite measure whose spectrum is not
periodic. This takes us full circle ending up in a situation discussed in Section 1.
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