Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Electronic Research Announcements
Electronic Research Announcements
ISSN 1079-6762

The Nash conjecture for threefolds


Author: János Kollár
Journal: Electron. Res. Announc. Amer. Math. Soc. 4 (1998), 63-73
MSC (1991): Primary 14P25
Published electronically: September 15, 1998
MathSciNet review: 1641168
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Nash conjectured in 1952 that every compact differentiable manifold can be realized as the set of real points of a real algebraic variety which is birational to projective space. This paper announces the negative solution of this conjecture in dimension 3. The proof shows that in fact very few 3-manifolds can be realized this way.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Electronic Research Announcements of the American Mathematical Society with MSC (1991): 14P25

Retrieve articles in all journals with MSC (1991): 14P25


Additional Information

János Kollár
Affiliation: University of Utah, Salt Lake City, UT 84112
Email: kollar@math.utah.edu

DOI: http://dx.doi.org/10.1090/S1079-6762-98-00049-3
PII: S 1079-6762(98)00049-3
Received by editor(s): July 17, 1998
Published electronically: September 15, 1998
Communicated by: Robert Lazarsfeld
Article copyright: © Copyright 1998 American Mathematical Society