Remote Access Electronic Research Announcements

Electronic Research Announcements

ISSN 1079-6762

 
 

 

Crofton formulas in projective Finsler spaces


Authors: J. C. Álvarez Paiva and E. Fernandes
Journal: Electron. Res. Announc. Amer. Math. Soc. 4 (1998), 91-100
MSC (1991): Primary 53C65; Secondary 53C60
DOI: https://doi.org/10.1090/S1079-6762-98-00053-5
Published electronically: November 23, 1998
MathSciNet review: 1655987
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We extend the classical Crofton formulas in Euclidean integral geometry to Finsler metrics on ${\Bbb R}^n$ whose geodesics are straight lines.


References [Enhancements On Off] (What's this?)

  • 1. J.C. Álvarez Paiva, Integral geometry on Finsler manifolds, preprint 1998.
  • 2. J.C. Álvarez Paiva, Anti-self-dual symplectic forms and integral geometry, preprint 1998.
  • 3. J.C. Álvarez Paiva, I.M. Gelfand, and M. Smirnov, Crofton densities, symplectic geometry, and Hilbert's fourth problem, in ``Arnold-Gelfand Mathematical Seminars, Geometry and Singularity Theory", V.I. Arnold, I.M. Gelfand, and V.S. Retakh (eds.), Birkhäuser, Boston, 1997, pp. 77-92. MR 98a:52005
  • 4. V.I. Arnold and A.B. Givental, Symplectic geometry, in ``Dynamical Systems IV", Encyclopaedia of Mathematical Sciences, Vol. 4, V.I. Arnold and S.P. Novikov (Eds.), Springer-Verlag, Berlin, Heidelberg, New York, 1990. MR 88b:58044
  • 5. A. Besse, ``Manifolds All of Whose Geodesics are Closed", Springer-Verlag, Berlin, Heidelberg, New York, 1978. MR 80c:53044
  • 6. H. Busemann, Problem IV: Desarguesian spaces, in ``Mathematical developments arising from Hilbert problems", Proceedings of Symposia in Pure Math., Vol. XXVII, Part 1, F. Browder (Ed.), AMS, Providence, Rhode Island, 1974. MR 55:3940
  • 7. H. Busemann, Areas in affine spaces III. The integral geometry of affine area, Rend. Circ. Mat. Palermo (2) 9 (1960), 226-242. MR 25:171
  • 8. H. Busemann, Geometries in which the planes minimize area, Ann. Mat. Pura Appl. (4) 55 (1961), 171-190. MR 26:715
  • 9. I.M. Gelfand and M. Smirnov, Lagrangians satisfying Crofton formulas, Radon transforms, and nonlocal differentials, Adv. in Math. 109 (1994), 188-227. MR 96a:53092
  • 10. D. Hilbert, Mathematical problems, translation in ``Mathematical developments arising from Hilbert problems", Proceedings of Symposia in Pure Math., Vol. XXVII, Part 1, F. Browder (Ed.), AMS, Providence, Rhode Island, 1974. MR 54:7158
  • 11. R.D. Holmes and A.C. Thompson, N-dimensional area and content in Minkowski spaces, Pacific J. Math. 85 (1979), 77-110. MR 81k:52023
  • 12. A.V. Pogorelov, ``Hilbert's Fourth Problem", Scripta Series in Mathematics, Winston and Sons, 1979. MR 80j:53066
  • 13. R. Schneider and J.A. Wieacker, Integral geometry in Minkowski spaces, Adv. in Math. 129 (1997), 222-260. MR 98k:52015
  • 14. Z.I. Szabo, Hilbert's fourth problem, I, Adv. in Math. 59 (1986), 185-301. MR 88f:53113
  • 15. A.C. Thompson, ``Minkowski Geometry", Encyclopedia of Math. and Its Applications, Vol. 63, Cambridge Univ. Press, Cambridge, 1996. MR 97f:52001

Similar Articles

Retrieve articles in Electronic Research Announcements of the American Mathematical Society with MSC (1991): 53C65, 53C60

Retrieve articles in all journals with MSC (1991): 53C65, 53C60


Additional Information

J. C. Álvarez Paiva
Affiliation: Université Catholique de Louvain, Institut de Mathématique Pure et Appl., Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve, Belgium
Email: alvarez@agel.ucl.ac.be

E. Fernandes
Affiliation: Université Catholique de Louvain, Institut de Mathématique Pure et Appl., Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve, Belgium
Email: fernandes@agel.ucl.ac.be

DOI: https://doi.org/10.1090/S1079-6762-98-00053-5
Keywords: Crofton formulas, Hilbert's fourth problem, Finsler geometry
Received by editor(s): August 8, 1998
Published electronically: November 23, 1998
Additional Notes: Partially supported by a \itshape credit aux chercheurs from the FNRS
Communicated by: Dmitri Burago
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society