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TARSKI’S PROBLEM ABOUT THE ELEMENTARY THEORY OF
FREE GROUPS HAS A POSITIVE SOLUTION

OLGA KHARLAMPOVICH AND ALEXEI MYASNIKOV

(Communicated by Efim Zelmanov)

Abstract. We prove that the elementary theories of all nonabelian free groups
coincide and that the elementary theory of a free group is decidable. These
results answer two old questions that were raised by A. Tarski around 1945.

The object of this announcement is to sketch proofs of the following two theo-
rems.

Theorem 1. The elementary theories of all nonabelian free groups coincide.

Theorem 2. The elementary theory of a free group is decidable.

These theorems answer two old questions that were raised by A. Tarski around
1945. We recall that the elementary theory Th(G) of a group G is the set of all
first order sentences in the language of group theory which are true in G. Notice
that in the language of group theory every sentence is equivalent to a sentence of
the following type:

Φ = ∀X1∃Y1 . . . ∀Xk∃Yk

r∨
p=1

(
s∧

i=1

upi(X1, Y1, . . . , Xk, Yk) = 1(1)

t∧
j=1

vpj(X1, Y1, . . . , Xk, Yk) 6= 1).

A discussion of this problem can be found in several textbooks on model theory
(see, for example, C. Chang and H. Keisler [5] or Yu. Ershov and E. Palutin [8])
as well as in several textbooks on group theory (see, for example, R. Lyndon and
P. Schupp [22]).

Our solution of Tarski’s problem takes on the strongest possible, positive form,
namely: the free group F (a1, . . . , an) freely generated by a1, . . . , an is an elementary
subgroup of F (a1, . . . , an, . . . , an+p) for every n ≥ 2 and p ≥ 0. Moreover, we prove
also that: the elementary theory Th(F ) of a free group F even with constants from
F in the language is decidable.

Observe, by comparison, that it is relatively easy to prove that free abelian
groups of finite rank are elementarily equivalent if and only if their ranks coincide.
The same is true for free nilpotent groups of finite rank and for free semigroups
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of finite rank. Notice also that the elementary theory of any free abelian group
of finite rank is decidable [35], but that the elementary theory of a free nilpotent
nonabelian group of finite rank is undecidable [25]. Moreover, the elementary theory
of a finitely generated free semigroup of rank at least two is also undecidable [29].

During the last 50 years Tarski’s problem for free groups has proved to be, on
the one hand, very challenging, and on the other hand, rather fruitful. Here we
mention just a few results from group theory which have been inspired by Tarski’s
problem.

Around 1959, R. Vaught asked whether the sentence

∀x∀y∀z(x2y2z2 = 1 → xy = yx & xz = zx & yz = zy)

holds in all free groups. Shortly afterwards, R. Lyndon proved that, for each solu-
tion x, y, z of the quadratic equation x2y2z2 = 1 in a free group, the elements x, y, z
commute pairwise [17]. This little theorem launched the whole theory of equations
over free groups. The first general results in this area are due to R. Lyndon [18],
A. Lorenc [16] and K. Appel [1], where they described the solution set of an arbi-
trary equation of one variable over a free group. In 1966 A. Mal’tsev described the
solution set of the equation [x, y] = [a, b] over the free group F (a, b). This has a
nontrivial implication for the elementary theory of a free group of rank 2, namely
that the set of all (free) bases of F (a, b) can be defined by a first order formula in
the language of group theory: the elements u, w ∈ F (a, b) form a basis in F (a, b) if
and only if they satisfy the following formula (with constants a, b):

∃z([u, w] = z−1[a, b]z ∨ [u, w] = z−1[b, a]z).

The focus of investigation subsequently turned to quadratic equations over free
groups, i.e., equations in which every variable occurs exactly twice (for example,
Mal’tsev’s equation above). In the papers of C. Edmund and L. Commerford [7],
[6] and R. Grigorchuck and P. Kurchanov [10], [9] the solution sets of standard
quadratic equations over arbitrary free group were described. This finished off the
quadratic case, because it follows from the work of A. Hoar, A. Karras and D.
Solitar [12], [13] that every quadratic equation is automorphically equivalent to a
standard one.

In 1982 G. Makanin [24] proved the crucial result about the algorithmic decid-
ability of Diophantine problem over free groups. He proved that if a given equation
over a free group F has a solution in F , then this equation has a solution of bounded
length (and this bound can be effectively computed from the equation itself). In his
paper G. Makanin developed an extremely powerful technique to deal with equa-
tions over free groups (as well as over free semigroups). We will have more to say
about this later. G. Makanin’s work then made it possible for A. Razborov to
describe the solution set of an arbitrary system of equations over F [31], [30].

Shortly afterwards G. Makanin [23] extended his results, proving that the uni-
versal theory Th∀(F ) of F is algorithmically decidable. Recall that given a group
G, the universal theory Th∀(G) consists of all universal sentences that are true in G
(a sentence is termed universal if it is equivalent to one of the type (1) in which only
universal quantifiers occur). Notice that any two finitely generated nonabelian free
groups have exactly the same universal theory; this follows readily from the fact
that any two such groups are embeddable into each other and the fact that any uni-
versal sentence which is true in a group is also true in every subgroup of this group.
Since the theory Th(F ) is complete (i.e., for every sentence either the sentence or
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its negation lies in Th(F )), it follows immediately that any two free nonabelian
groups satisfy exactly the same boolean combinations of universal formulas.

Now, denote by Th+(G) the positive theory of the group G, i.e., the set of all
positive sentences from Th(G) (a sentence is called positive if it is equivalent to one
of the type (1) that does not contain inequalities). In 1966 Yu. Merzlyakov proved
the remarkable theorem that any two nonabelian free groups of finite rank have
the same positive theory [26]. Combining results on the decidability of Th∀(F )
with the above-mentioned theorem, G. Makanin showed that the positive theory
Th+(G) is decidable [23].

Another part of the elementary theory which was shown to be the same for
any two nonabelian free groups of finite rank consists of all so-called ∀∃-sentences
or, sometimes, Π2-sentences (a ∀∃-sentence is a sentence which is equivalent to a
sentence of the type ∀X∃Y φ(X, Y ), where formula φ does not contain quantifiers,
and X and Y are arbitrary tuples of variables). The corresponding part of Th(F ) is
denoted by Th∀∃(F ). That result is due to G. Sacerdote [34]. He used Merzlyakov’s
ideas and the small cancellation technique in Van-Kampen diagrams for group
presentations. Again, it follows from his theorem that free nonabelian groups of
finite rank satisfy the same boolean combinations of ∀∃-sentences.

So, two important pieces of Tarski’s conjecture, Th+(F ) and Th∀∃(F ), have
already been proved to be true. In order to understand more of Th(F ) some new
ingredients were needed. The new tools in our investigation of Th(F ) are algebraic
geometry over groups, the theory of exponential groups, a technique involving what
is termed discrimination, an implicit function theorem (over free groups) and a
description of irreducible algebraic varieties (over free groups) in terms of trianglular
quasi-quadratic systems. It is to these topics that we need to turn now.

It was clear from the beginning that to deal with the Tarski problem one needed
a precise description of solution sets of equations (and inequations) over free groups.
In the classical case, algebraic geometry has been shown to be very useful in dealing
with polynomial equations over fields. An analog of algebraic geometry over groups
has been developed by G. Baumslag, A. Myasnikov and V. Remeslennikov in [2]. It
provides the necessary topological machinery as well as a method for transcribing
geometric notions into the language of pure group theory. Following [2] and [14]
we can use standard algebraic geometry notions such as algebraic sets, the Zariski
topology, Noetherian domains, irreducible varieties, radicals and coordinate groups
to organize an approach to finding a solution of Tarski’s problem. Some of these
ideas go back to R. Bryant [4], V. Guba [11], B. Plotkin [28] and E. Rips.

Another essential ingredient in our treatment of the Tarski problem is the the-
ory of exponential groups. This area starts with results of P. Hall, A. Mal’tsev,
G. Baumslag and R. Lyndon. R. Lyndon was the first who recognized the impor-
tance of exponential groups for solving equations over groups. He found that the
solution set of any equation with one variable over a free group F can be obtained
from finitely many “parametric” words by specializing their parameters into the
ring of integers [18]. More precisely, a parametric word over F with parametrs
in the polynomial ring Z[t1, . . . , tn] is a formal expression that can be obtained
from a basis of F by finitely many concatenations and exponentiations by elements
from Z[t1, . . . , tn]. If one specializes the parameters t1, . . . , tn into integers (i.e., one
substitutes some particular integers in place of the ti’s), then this gives rise to a
specialization of a given parametric word into an element of the group F . What R.
Lyndon proved is that for any equation with one variable (and, perhaps, constants
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from F ) one can effectively find a finite set of parametric words with parameters
from the ring Z[t1, . . . , tn], such that any solution of this equation can be obtained
by some specialization of one of these words. Later K. Appel refined this result,
proving that the solution set of an equation in one variable over a free group can
be parametrized by finitely many words of the type fgth, where f, g, h ∈ F and
t is a parameter (from Z[t]) [1]. This led R. Lyndon to introduce the notion of a
group with parametric exponents in an associative unitary ring A. In particular,
he described and studied the free exponential group FZ[t] over the ring Z[t]. One
of the crucial results of this study was that the group FZ[t] is discriminated by F ,
i.e., for any finitely many nontrivial elements in FZ[t] there exists a homomorphism
φ : FZ[t] → F , which is the identity on F , such that all the images under φ of the
given elements are also nontrivial. In 1989 V. Remeslennikov established a surpris-
ing connection between residual properties of groups and their universal theories,
namely, that a finitely generated group H can be discriminated by a nonabelian
free group F if and only if H has exactly the same universal theory as F [33]. It
follows then immediately from Lyndon’s result that all finitely generated subgroups
of FZ[t] have the same universal theory as F . This emphasized once more the role
of FZ[t] in the investigation of Th(F ).

A modern treatment of exponential groups is contained in the paper by A. Myas-
nikov and V. Remeslennikov [27]. In particular, they proved that the group FZ[t]

can be obtained starting from F by an infinite chain of HNN-extensions of a very
specific type, so-called extensions of centralizers. If G is a group and C is the
centralizer of a nontrivial element in G, then the following HNN-extension:

G(C, s) = 〈G, s | s−1cs = c (c ∈ C)〉
is called a free extension of the centralizer C by s. Thus, to construct FZ[t] one needs
to extend each centralizer sufficiently many times until every proper centralizer is
isomorphic to a free abelian group of infinite rank (i.e., the additive group of Z[t]).
This implies that any finitely generated subgroup of FZ[t] is actually a subgroup of
a group which can be obtained from F by finitely many extensions of centralizers,
and for such groups one can apply the techniques of H. Bass and J.-P. Serre to
describe the structure of these subgroups.

In the same paper [27] the authors put forward the following conjecture: a
finitely generated group is discriminated by a nonabelian free group F if and only
if it is embeddable into F Z[t]. A positive solution of this conjecture would provide
a description of finitely generated groups which are discriminated by F as well as
a description of all finitely generated groups which have the same universal theory
as F .

This conjecture was positively solved by O. Kharlampovich and A. Myasnikov
in a series of two papers [14] and [15]. Our present work is a continuation of these
two papers and makes use of the results and methods developed there. In the first
of these papers we proved the following result: the coordinate group FRad(S) of the
algebraic set VF (S) defined by a quadratic equation S = 1 with coefficients in F is
embeddable into a group obtained from F by finitely many extensions of centralizers
(and hence is a subgroup of FZ[t]). This implies that the variety VF (S) is irreducible
in the Zariski topology over Fn. Moreover, we completely described the radical
Rad(S). It turns out that the radical Rad(S) coincides (with a few special classes
of exceptions) with the normal closure of S in the group F ∗F (X). This embedding
theorem has its roots in G. Baumslag’s paper [3], where he considered discrimination
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of surface groups, which are exactly (with few exceptions) the coordinate groups of
the standard quadratic equations without coefficients. For quadratic equations with
coefficients the embeddings are not easy to construct. We need to use a particular
form of such embeddings in order to prove a so-called implicit function theorem
over free groups, which we will discuss in due course. In the second paper [15] we
refined the Makanin–Razborov process to get much simpler descriptions of solution
sets of arbitrary systems of equations with coefficients over free groups. To explain
what this means, we need the following definition.

Let G be a group and let X1, . . . , Xm be disjoint tuples of variables. A system
(with coefficients from G)

S1(X1, . . . , Xm) = 1

S2(X2, . . . , Xm) = 1

. . .

Sm(Xm) = 1

is said to be triangular quasi-quadratic if for every i the equation Si(Xi, . . . , Xm) =
1 is quadratic in the variables from Xi.

Such a system is said to be nondegenerate if the equation Si(Xi, . . . , Xm) = 1
over the coordinate group

Gi+1 = G[Xi+1, . . . Xm]/Rad(Si+1(Xi+1, . . . , Xm), . . . , Sm(Xm)), Gm = G

(with elements from Xi considered as variables and elements from Xi+1, . . . , Xm as
coefficients from Gi+1) has a solution in Gi+1 for each i.

Notice that to solve a nondegenerate triangular quasi-quadratic system over G
one needs to solve the last quadratic equation Sm(Xm) = 1 over G, then the
previous one (which is again quadratic!) Sm−1(Xm−1, Xm) = 1 over the coordinate
group Gm−1, and continue the process going up along the triangular system until
the first equation S1(X1, . . . , Xm) = 1 has been solved in the group G1. Now,
to get solutions of this system in the initial group G, one needs to specialize the
solutions obtained into G (in this case to specialize means to take an arbitrary
homomorphism from G1 into G and apply it to the obtained set of solutions in
G1). Now, the following crucial result from [15] describes the solution set in F of
an arbitrary system S(X) = 1 with coefficients from F : for any such S(X) = 1
one can effectively find a finite family of nondegenerate triangular quasi-quadraitc
systems U1(Y1) = 1, . . . , Un(Yn) = 1 (here Yi’s are disjoint tuples of variables of,
possibly, different length) and word mappings p1(Y1), . . . , pn(Yn) such that

VF (S) = p1(VF (U1)) ∪ · · · ∪ pn(VF (Un)).

The possibility of some weak form of such description of solution sets was con-
jectured by A. Razborov in [32] and also by E. Rips.

The main technical result needed in this work is the following “implicit function
theorem” for quadratic equations over F , which is interesting in its own right.

Let

S(x1, . . . , xn, c1, . . . , ck) = 1

be a “nonexceptional” quadratic equation in variables X = (x1, . . . , xn) with con-
stants c1, . . . , ck in F (roughly speaking, “nonexeptional” means that the radical of
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S coincides with the normal closure of S and S is not an equation of one of few
very specific types). Suppose now that for each solution of the equation S(X) = 1
some other equation

T (x1, . . . , xn, y1, . . . , ym, c1, . . . , ck) = 1

has a solution in F ; then T (X, Y ) = 1 has a solution Y = (y1, . . . , ym) in the
coordinate group FRad(S) of the equation S(X) = 1.

This implies that locally (in terms of Zariski’s topology), i.e., in the neighbour-
hood defined by the equation S(X) = 1, the implicit functions y1, . . . , ym can be
expressed as an explicit word in variables x1, . . . , xn and constants from F , say
Y = P (X). This result allows one to eliminate a quantifier from the following
formula:

Φ = ∀X∃Y (S(X) = 1 → T (X, Y ) = 1).

Indeed, the sentence Φ is equivalent in F to the following one:

Ψ = ∀X(S(X) = 1 → T (X, P (X)) = 1).

The following theorem then holds.

Theorem 3. Let F = F (a1, . . . , an, . . . , an+p), n ≥ 2, p ≥ 0, be a free group with
a basis a1, . . . , an+p. There exists an algorithm which, given a first order sentence
Ψ in the language of group theory with constants a1, . . . , an, finds a finite boolean
combination Ψ∗ of universal sentences in the same language, such that Ψ is true in
F if and only if Ψ∗ is true in F . Moreover, this boolean combination Ψ∗ does not
depend on p.

We are very thankful to V. Remeslennikov and E. Rips for numerous discus-
sions. In 1991–1992 V. Remeslennikov suggested a new approach for finding a
system of axioms for the elementary theory Th(F ). In 1995, in several talks in New
York and Montreal, E. Rips acquainted the authors with some methods due to Yu.
Merzlyakov and G. Makanin and also with an interesting scheme for eliminating
quantifiers for arbitrary formulas in free groups to obtain Diophantine formulas.
We used a different approach, but it seems that the methods presented here might
help to carry out their projects.

We also would like to mention that in our research we made use of the software
package “Magnus” developed at CCNY of CUNY (which can be found on their
home page at http://zebra.sci.ccny.cuny.edu/web ). This software enabled us to
solve some awkward equations over free groups and henceforth to find particular
embeddings of some groups into FZ[t].
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