Remote Access Electronic Research Announcements

Electronic Research Announcements

ISSN 1079-6762

 
 

 

Wavelets on general lattices, associated with general expanding maps of $\mathbf R^n$


Author: A. Calogero
Journal: Electron. Res. Announc. Amer. Math. Soc. 5 (1999), 1-10
MSC (1991): Primary 42C15
DOI: https://doi.org/10.1090/S1079-6762-99-00054-2
Published electronically: January 25, 1999
MathSciNet review: 1667201
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In the context of a general lattice $\Gamma$ in ${\mathbf R}^n$ and a strictly expanding map $M$ which preserves the lattice, we characterize all the wavelet families, all the MSF wavelets, all the multiwavelets associated with a Multiresolution Analysis (MRA) of multiplicity $d\ge 1,$ and all the scaling functions. Moreover, we give several examples: in particular, we construct a single, MRA and $C^\infty ({\mathbf R}^n)$ wavelet, which is nonseparable and with compactly supported Fourier transform.


References [Enhancements On Off] (What's this?)

  • [B-M-M] Bagget W.B., Medina H.A., Merrill K.D.: Generalized multiresolution analyses, and a construction procedure for all wavelet sets in ${\mathbf R}^n$, preprint.
  • [Ca1] Calogero A.: A characterization of wavelets on general lattices, Journal of Geometric Analysis, to appear.
  • [Ca2] Calogero A.: A characterization of scaling functions of multiresolution analyses on general lattices, preprint (1998).
  • [Ca3] Calogero A.: Wavelets on general lattices, associated with general expanding maps of ${\mathbf R}^n.$ Ph. D. Thesis, Universitá di Milano (1998).
  • [C-G] Calogero A., Garrigós G.: A characterization of wavelet families arising from biorthogonal MRA's of multiplicity $d$, preprint (1998).
  • [Co] Cohen A.: Ondelettes et traitement numérique du signal. Research Notes in Mathematics, Masson, Paris (1992). MR 95g:42038
  • [C-D] Cohen A., Daubechies I.: Nonseparable bidimensional wavelet bases. Revista Matemática Iberoamericana 9, No. 1 (1993). MR 94k:42047
  • [D-L-S1] Dai X., Larson D., Speegle D.: Wavelet sets in ${\mathbf R}^n$, The Journal of Fourier Analysis and Applications 3, 451-456 (1997). MR 98m:42048
  • [D-L-S2] Dai X., Larson D., Speegle D.: Wavelet sets in ${\mathbf R}^n$, II. Contemporary Mathematics 216, 15-40 (1998). CMP 98:11
  • [D-S] De Michele L., Soardi P.M.: On multiresolution analysis of multiplicity $d$, Mh. Math 124, 255-272 (1997). MR 98k:42039
  • [F-G-W-W] Frazier M., Garrigós G., Wang K., Weiss G.: A characteritazion of functions that generate wavelet and related expansion, Journal of Fourier Analysis and Applications, Vol. 3 (special issue), (1997). CMP 98:09
  • [Ga] Garrigós G.: The characterization of wavelets and related functions and connectivity of $\alpha$-localized wavelets on ${\mathbf R}$, Ph.D. Thesis, Washington University in St. Louis (1998).
  • [Gr] Gripenberg G.: A necessary and sufficient condition for the existence of a father wavelet, Studia Math. 114 (3) (1995), 207-226. MR 96d:42049
  • [G-H-M] Geronimo J., Hardin D., Massopust P.R.: Fractal functions and wavelet expansions based on several functions, J. Approx. Theory 78, 373-401 (1994). MR 95h:42033
  • [G-M] Gröchenig K., Madych W.R.: Multiresolution analysis, Haar bases, and self-similar tilings of $\mathbf{R}^n$, IEEE Trans. Inform. Theory 38, 556-568 (1992). MR 93i:42001
  • [H] Hervé L.: Multi-resolution analysis of multiplicity $d:$ applications to dyadic interpolation, Appl. and Comput. Harmonic Anal. 1, 299-315 (1994). MR 97a:42026
  • [H-W] Hernández E., Weiss G.: A first course on wavelets, CRC Press (1996). MR 97i:42015
  • [H-W-W1] Hernández E., Wang X., Weiss G.: Smoothing minimally supported frequency wavelets: part I, Journal of Fourier Analysis and Applications, Vol. 2, No. 4 (1996), 329-340. MR 97h:42015
  • [H-W-W2] Hernández E., Wang X., Weiss G.: Smoothing minimally supported frequency (MSF) wavelets: part II, Journal of Fourier Analysis and Applications, Vol. 3, No. 1 (1997), 23-41. MR 98b:42049
  • [H-W-W3] Hernández E., Wang X., Weiss G.: Characterization of wavelets, scaling function and wavelets associated with multiresolution analysis. Washington University in St. Louis, Preprint (1995).
  • [K-L] Kahane J. P., Lemarié-Rieusset P.G.: Fourier series and wavelets. Gordon and Breach (1995).
  • [L1] Lemarié-Rieusset P.G.: Analyse multi-schelles et ondelettes à support compact, Les ondelettes en 1989 (P.G. Lemarié, Ed.), Lecture Notes in Mathematics, 1438, Springer-Verlag (1990), 26-38. MR 92g:42018
  • [L2] Lemarié-Rieusset P.G.: Ondelettes à localisation exponentielle, J. Math. Pure et Appl. 67 (1988), 227-236.
  • [Ma] Madych W.R.: Some elementary properties of multiresolution analyses of $L^2({\mathbf R}^n)$, Wavelets: A tutorial in theory and applications (C.K. Chui, Ed.), Academic Press (1992), 259-294. MR 93k:42018
  • [Me] Meyer Y.: Ondelettes et opérateurs: Ondelettes. Hermann, Paris (1990). MR 93i:42002
  • [S-W] Soardi P.M., Weiland D.: Single wavelets in $n$-dimensions, The Journal of Fourier Analysis and Applications 4, 299-315 (1998). CMP 99:03
  • [S-N] Strang G., Nguyen T.: Wavelets and filter banks, Wellesley-Cambridge Press (1996). MR 98b:94003
  • [S1] Strichartz R.S.: Construction of orthonormal wavelets, Wavelets, Mathematics and Applications (J.J: Benedetto and M.W. Frazier, Eds.), CRC Press (1993), 23-50. MR 94i:42047
  • [S2] Strichartz R.S.: Wavelets and self-affine tilings, Constr. Approx. 9, 327-346 (1993). MR 94f:42039
  • [W] Wang X.: The study of wavelets from the properties of their Fourier trasforms, Ph.D. Thesis, Washington University in St. Louis (1995).

Similar Articles

Retrieve articles in Electronic Research Announcements of the American Mathematical Society with MSC (1991): 42C15

Retrieve articles in all journals with MSC (1991): 42C15


Additional Information

A. Calogero
Affiliation: Dipartimento di Matematica, Universitá di Milano, via Saldini 50, 20133 Milano, Italy
Email: Calogero@vmimat.mat.unimi.it

DOI: https://doi.org/10.1090/S1079-6762-99-00054-2
Keywords: Wavelets, multiresolution analysis (MRA), general lattices in ${\mathbf R}^n, $ MSF wavelets, multiwavelets
Received by editor(s): July 13, 1998
Published electronically: January 25, 1999
Communicated by: Stuart Antman
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society