The AMS website will be down for maintenance on May 23 between 6:00am - 8:00am EDT. For questions please contact AMS Customer Service at or (800) 321-4267 (U.S. & Canada), (401) 455-4000 (Worldwide).


Remote Access Electronic Research Announcements

Electronic Research Announcements

ISSN 1079-6762



The Schläfli formula in Einstein manifolds with boundary

Authors: Igor Rivin and Jean-Marc Schlenker
Journal: Electron. Res. Announc. Amer. Math. Soc. 5 (1999), 18-23
MSC (1991): Primary 53C21; Secondary 53C25
Published electronically: March 22, 1999
MathSciNet review: 1669399
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a smooth analogue of the classical Schläfli formula, relating the variation of the volume bounded by a hypersurface moving in a general Einstein manifold and the integral of the variation of the mean curvature. We extend it to variations of the metric in a Riemannian Einstein manifold with boundary, and apply it to Einstein cone-manifolds, to isometric deformations of Euclidean hypersurfaces, and to the rigidity of Ricci-flat manifolds with umbilic boundaries.

RÉSUMÉ. On donne un analogue régulier de la formule classique de Schläfli, reliant la variation du volume borné par une hypersurface se déplaçant dans une variété d'Einstein à l'intégrale de la variation de la courbure moyenne. Puis nous l'étendons aux variations de la métrique à l'intérieur d'une variété d'Einstein riemannienne à bord. On l'applique aux cone-variétés d'Einstein, aux déformations isométriques d'hypersurfaces de $E^n$, et à la rigidité des variétés Ricci-plates à bord ombilique.

References [Enhancements On Off] (What's this?)

  • [AR97] F. O. Almgren and I. Rivin. The mean curvature integral is invariant under bending. Manuscript, 1997.
  • [BG93] M. Berger and B. Gostiaux. Géométrie différentielle: variétés, courbes et surfaces. Presses universitaires de France, 1993. MR 93j:53001
  • [Biq97] O. Biquard. Métriques d'Einstein asymptotiquement symétriques. Prépublication no. 97-24, Ecole Polytechnique, 1997.
  • [Ble96] David D. Bleecker. Volume increasing isometric deformation of convex polyhedra. Journal of Differential Geometry, 43:505-526, 1996. MR 97g:52035
  • [Bon] F. Bonahon. A Schläfli-type formula for convex cores of hyperbolic 3-manifolds. Journal of Diff. Geometry. To appear.
  • [Con77] R. Connelly. A counterexample to the rigidity conjecture for polyhedra. Inst. Haut. Etud. Sci., Publ. Math., 47:333-338, 1977. MR 58:7642
  • [DeT81] D. M. DeTurck. Existence of metrics with prescribed Ricci curvature: local theory. Invent. Math., 65:179-207, 1981. MR 83b:53019
  • [GL91] C. R. Graham and J. M. Lee. Einstein metrics with prescribed conformal infinity on the ball. Adv. Math., 87:186-225, 1991. MR 92i:53041
  • [Her79] G. Herglotz. Gesammelte Schriften. Herausgegeben im Auftrage der Akademie der Wissenschaften in Goettingen von Hans Schwerdtfeger. Vandenhoeck & Ruprecht, 1979. MR 80h:01040
  • [Hod86] C. Hodgson. PhD Thesis, Princeton University, 1986.
  • [Lie00] H. Liebmann. Ueber die Verbiegung der geschlossenen Fläschen positiver Krümmung. Math. Annalen, 53:81-112, 1900.
  • [Mil94] J. Milnor. The Schläfli differential equality. In Collected papers, vol. 1. Publish or Perish, 1994. MR 95c:01043
  • [Nir53] L. Nirenberg. The Weyl and Minkowski problems in differential geometry in the large. Comm. Pure Appl. Math, 6:337-394, 1953. MR 15:347b
  • [Pog73] A. V. Pogorelov. Extrinsic Geometry of Convex Surfaces. American Mathematical Society, 1973. Translations of Mathematical Monographs. Vol. 35. MR 49:11439
  • [RS98] I. Rivin and J-M. Schlenker. Schläfli formula for Einstein manifolds. IHES Preprint, 1998.
  • [San76] L. Santaló. Integral geometry and geometric measure theory. Addison-Wesley, Reading, MA, 1976. MR 55:6340
  • [Sch98] J.-M. Schlenker. Einstein manifolds with convex boundaries. Prépublication no. 98-12, Université de Paris-Sud, 1998.
  • [SP97] E. Suarez-Peiró. A Schläfli formula for simplices in semi-Riemannian hyperquadrics, Gauss-Bonnet formulas for simplices in the de Sitter sphere and the dual volume of a hyperbolic simplex. Manuscript, 1997.
  • [Spi75] M. Spivak. A comprehensive introduction to geometry, Vols. I-V. Publish or perish, 1970-1975. MR 42:2369; 42:6726; 51:8962; 52:15254a; 52:15254b
  • [Vin93] D. V. Alekseevskij, E. B. Vinberg, and A. S. Solodovnikov. Geometry of Spaces of Constant Curvature, Encyclopaedia of Mathematical Sciences, 29, Springer, Berlin, 1993. MR 95b:53042

Similar Articles

Retrieve articles in Electronic Research Announcements of the American Mathematical Society with MSC (1991): 53C21, 53C25

Retrieve articles in all journals with MSC (1991): 53C21, 53C25

Additional Information

Igor Rivin
Affiliation: Department of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, G.B.

Jean-Marc Schlenker
Affiliation: Topologie et Dynamique (URA 1169 CNRS), Bât. 425, Université de Paris-Sud, 91405 Orsay Cedex, France

Keywords: Vanishing theorems; null spaces
Received by editor(s): July 31, 1998
Published electronically: March 22, 1999
Communicated by: Walter Neumann
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society