Pointwise theorems for amenable groups

Author:
Elon Lindenstrauss

Journal:
Electron. Res. Announc. Amer. Math. Soc. **5** (1999), 82-90

MSC (1991):
Primary 28D15

DOI:
https://doi.org/10.1090/S1079-6762-99-00065-7

Published electronically:
June 30, 1999

MathSciNet review:
1696824

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we describe proofs of the pointwise ergodic theorem and Shannon-McMillan-Breiman theorem for discrete amenable groups, along Følner sequences that obey some restrictions. These restrictions are mild enough so that such sequences exist for all amenable groups.

**1.**A. P. Calderon,*A general ergodic theorem*, Annals of Mathematics**58**(1953), no. 1, 182-191. MR**14:1071a****2.**W. R. Emerson,*The pointwise ergodic theorem for amenable groups*, American Journal of Mathematics**96**(1974), no. 3, 472-478. MR**50:7403****3.**W. R. Emerson and F. P. Greenleaf,*Groups structure and the pointwise ergodic theorem for connected amenable groups*, Advances in Math.**14**(1974), 153-172. MR**52:5867****4.**A. del Junco and J. Rosenblatt,*Counterexamples in ergodic theory and number theory*, Math. Ann.**245**(1979), 185-197. MR**81d:10042****5.**D. Ornstein and B. Weiss,*The Shannon-McMillan-Breiman theorem for a class of amenable groups*, Israel Journal of Mathematics**44**(1983), no. 1, 53-60. MR**85f:28018****6.**D. Ornstein and B. Weiss,*The Shannon-McMillan-Breiman theorem for countable partitions*, unpublished, c. 1985, 4 pages.**7.**D. Ornstein and B. Weiss,*Entropy and isomorphism theorems for actions of amenable groups*, Journal D'analyse Mathématique**48**(1987), 1-142. MR**88j:28014****8.**A. Paterson,*Amenability*, Mathematical Surveys and Monographs, vol.**29**, American Mathematical Society, Providence, Rhode Island, 1988. MR**90e:43001****9.**D. Rudolph,*Fundamentals of Measurable Dynamics - Ergodic theory on Lebesgue spaces*, Oxford University Press, New York, 1990. MR**92e:28006****10.**A. Shulman,*Maximal ergodic theorems on groups*, Dep. Lit. NIINTI, No. 2184, 1988.**11.**A. Tempelman,*Ergodic theorems for general dynamical systems*, Dokl. Akad. Nauk SSSR**176**(1967), no. 4, 790-793; English translation: Soviet Math. Dokl.**8**(1967), no. 5, 1213-1216. MR**36:2779****12.**A. Tempelman,*Ergodic theorems for group actions, informational and thermodynamical aspects*, Kluwer Academic Publishers, Dordrecht, 1992. MR**94f:22007**

Retrieve articles in *Electronic Research Announcements of the American Mathematical Society*
with MSC (1991):
28D15

Retrieve articles in all journals with MSC (1991): 28D15

Additional Information

**Elon Lindenstrauss**

Affiliation:
Institute of Mathematics, The Hebrew University, Jerusalem 91904, Israel

Email:
elon@math.huji.ac.il

DOI:
https://doi.org/10.1090/S1079-6762-99-00065-7

Keywords:
Amenable groups,
pointwise convergence,
ergodic theorems

Received by editor(s):
January 18, 1999

Published electronically:
June 30, 1999

Additional Notes:
The author would like to thank the Clore Foundation for its support.

Communicated by:
Yitzhak Katznelson

Article copyright:
© Copyright 1999
American Mathematical Society