Minimal varieties of algebras of exponential growth
Authors:
A. Giambruno and M. Zaicev
Journal:
Electron. Res. Announc. Amer. Math. Soc. 6 (2000), 4044
MSC (2000):
Primary 16R10, 16P90
Published electronically:
June 6, 2000
MathSciNet review:
1767635
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The exponent of a variety of algebras over a field of characteristic zero has been recently proved to be an integer. Through this scale we can now classify all minimal varieties of a given exponent and of finite basic rank. As a consequence we describe the corresponding Tideals of the free algebra, and we compute the asymptotics of the related codimension sequences. We then verify in this setting some known conjectures.
 1.
Allan
Berele, Generic verbally prime PIalgebras and their
GKdimensions, Comm. Algebra 21 (1993), no. 5,
1487–1504. MR 1213968
(94f:16038), http://dx.doi.org/10.1080/00927879308824632
 2.
Allan
Berele and Amitai
Regev, On the codimensions of the verbally prime P.I.\
algebras, Israel J. Math. 91 (1995), no. 13,
239–247. MR 1348314
(96g:16028), http://dx.doi.org/10.1007/BF02761648
 3.
A.
Berele and A.
Regev, Codimensions of products and of intersections of verbally
prime 𝑇ideals, Israel J. Math. 103 (1998),
17–28. MR
1613536 (99b:16037), http://dx.doi.org/10.1007/BF02762265
 4.
Veselin
S. Drenski, Extremal varieties of algebras. I, Serdica
13 (1987), no. 4, 320–332 (Russian). MR 929452
(90e:08010)
 5.
Veselin
S. Drenski, Extremal varieties of algebras. II, Serdica
14 (1988), no. 1, 20–27 (Russian). MR 944480
(90e:08011)
 6.
V. Drensky, GelfandKirillov dimension of PIalgebras, In: Methods in Ring Theory, Lect. Notes in Pure and Appl. Math., vol. 198, Marcel Dekker, New York, 1998, pp. 97113.
 7.
A.
Giambruno and M.
Zaicev, On codimension growth of finitely generated associative
algebras, Adv. Math. 140 (1998), no. 2,
145–155. MR 1658530
(99k:16049), http://dx.doi.org/10.1006/aima.1998.1766
 8.
A.
Giambruno and M.
Zaicev, Exponential codimension growth of PI algebras: an exact
estimate, Adv. Math. 142 (1999), no. 2,
221–243. MR 1680198
(2000a:16048), http://dx.doi.org/10.1006/aima.1998.1790
 9.
A. Giambruno and M. Zaicev, A characterization of algebras with polynomial growth of the codimensions, Proc. Amer. Math. Soc. (to appear).
 10.
A.
R. Kemer, The Spechtian nature of 𝑇ideals whose
condimensions have power growth, Sibirsk. Mat. Ž.
19 (1978), no. 1, 54–69, 237 (Russian). MR 0466190
(57 #6070)
 11.
Aleksandr
Robertovich Kemer, Ideals of identities of associative
algebras, Translations of Mathematical Monographs, vol. 87,
American Mathematical Society, Providence, RI, 1991. Translated from the
Russian by C. W. Kohls. MR 1108620
(92f:16031)
 12.
Jacques
Lewin, A matrix representation for
associative algebras. I, II, Trans. Amer. Math.
Soc. 188 (1974),
293–308; ibid. 188\ (1974), 309–317. MR 0338081
(49 #2848), http://dx.doi.org/10.1090/S00029947197403380815
 13.
Claudio
Procesi, Noncommutative affine rings, Atti Accad. Naz. Lincei
Mem. Cl. Sci. Fis. Mat. Natur. Sez. I (8) 8 (1967),
237–255 (English, with Italian summary). MR 0224657
(37 #256)
 14.
Amitai
Regev, Existence of identities in 𝐴⊗𝐵,
Israel J. Math. 11 (1972), 131–152. MR 0314893
(47 #3442)
 15.
Amitai
Regev, Codimensions and trace codimensions of matrices are
asymptotically equal, Israel J. Math. 47 (1984),
no. 23, 246–250. MR 738172
(85j:16024), http://dx.doi.org/10.1007/BF02760520
 1.
 A. Berele, Generic verbally prime PIalgebras and their GKdimension, Comm. Algebra 21 (1993), 14781504. MR 94f:16038
 2.
 A. Berele and A. Regev, On the codimensions of the verbally prime P.I. algebras, Israel J. Math. 91 (1995), 239247. MR 96g:16028
 3.
 A. Berele and A. Regev, Codimensions of products and intersections of verbally prime Tideals, Israel J. Math. 103 (1998), 1728. MR 99b:16037
 4.
 V. Drensky, Extremal varieties of algebras I, Serdica 13 (1987), 320332. (Russian) MR 90e:08010
 5.
 V. Drensky, Extremal varieties of algebras II, Serdica 14 (1988), 2027. (Russian) MR 90e:08011
 6.
 V. Drensky, GelfandKirillov dimension of PIalgebras, In: Methods in Ring Theory, Lect. Notes in Pure and Appl. Math., vol. 198, Marcel Dekker, New York, 1998, pp. 97113.
 7.
 A. Giambruno and M. Zaicev On codimension growth of finitely generated associative algebras, Adv. Math. 140 (1998), 145155. MR 99k:16049
 8.
 A. Giambruno and M. Zaicev, Exponential codimension growth of PIalgebras: an exact estimate, Adv. Math. 142 (1999), 221243. MR 2000a:16048
 9.
 A. Giambruno and M. Zaicev, A characterization of algebras with polynomial growth of the codimensions, Proc. Amer. Math. Soc. (to appear).
 10.
 A. Kemer, Tideals with power growth of the codimensions are Specht, Sibirskii Matematicheskii Zhurnal, 19 (1978), 5469; English translation: Siberian Math. J. 19 (1978), 3748. MR 57:6070
 11.
 A. Kemer, Ideals of identities of associative algebras, AMS Translations of Mathematical Monographs, Vol. 87, 1988. MR 92f:16031
 12.
 J. Lewin, A matrix representation for associative algebras. I, Trans. Amer. Math. Soc. 188 (1974), 293308. MR 49:2848
 13.
 C. Procesi, Noncommutative affine rings, Atti Acc. Naz. Lincei, Ser. VIII 8 (1967), 239255. MR 37:256
 14.
 A. Regev, Existence of identities in , Israel J. Math. 11 (1972), 131152. MR 47:3442
 15.
 A. Regev, Codimensions and trace codimensions of matrices are asymptotically equal, Israel J. Math. 47 (1984), 246250. MR 85j:16024
Similar Articles
Retrieve articles in Electronic Research Announcements of the American Mathematical Society
with MSC (2000):
16R10,
16P90
Retrieve articles in all journals
with MSC (2000):
16R10,
16P90
Additional Information
A. Giambruno
Affiliation:
Dipartimento di Matematica ed Applicazioni, Università di Palermo, 90123 Palermo, Italy
Email:
a.giambruno@unipa.it
M. Zaicev
Affiliation:
Department of Algebra, Faculty of Mathematics and Mechanics, Moscow State University, Moscow 119899, Russia
Email:
zaicev@mech.math.msu.su
DOI:
http://dx.doi.org/10.1090/S1079676200000780
PII:
S 10796762(00)000780
Keywords:
Varieties of algebras,
polynomial identities
Received by editor(s):
October 4, 1999
Published electronically:
June 6, 2000
Additional Notes:
The first author was partially supported by MURST of Italy; the second author was partially supported by the RFBR grants 990100233 and 961596050.
Communicated by:
Efim Zelmanov
Article copyright:
© Copyright 2000
American Mathematical Society
