Solitons on pseudoRiemannian manifolds: stability and motion
Author:
David M. A. Stuart
Journal:
Electron. Res. Announc. Amer. Math. Soc. 6 (2000), 7589
MSC (2000):
Primary 58J45, 37K45; Secondary 35Q75, 83C10, 37K40
Published electronically:
October 5, 2000
MathSciNet review:
1783091
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: This is an announcement of results concerning a class of solitary wave solutions to semilinear wave equations. The solitary waves studied are solutions of the form to semilinear wave equations such as on and are called nontopological solitons. The first preprint provides a new modulational approach to proving the stability of nontopological solitons. This technique, which makes strong use of the inherent symplectic structure, provides explicit information on the time evolution of the various parameters of the soliton. In the second preprint a pseudoRiemannian structure is introduced onto and the corresponding wave equation is studied. It is shown that under the rescaling , with , it is possible to construct solutions representing nontopological solitons concentrated along a timelike geodesic.
 1.
T.
B. Benjamin, The stability of solitary waves, Proc. Roy. Soc.
(London) Ser. A 328 (1972), 153–183. MR 0338584
(49 #3348)
 2.
H.
Berestycki, P.L.
Lions, and L.
A. Peletier, An ODE approach to the existence of positive solutions
for semilinear problems in 𝑅^{𝑁}, Indiana Univ. Math.
J. 30 (1981), no. 1, 141–157. MR 600039
(83e:35009), http://dx.doi.org/10.1512/iumj.1981.30.30012
 3.
H.
Berestycki and P.L.
Lions, Nonlinear scalar field equations. I. Existence of a ground
state, Arch. Rational Mech. Anal. 82 (1983),
no. 4, 313–345. MR 695535
(84h:35054a), http://dx.doi.org/10.1007/BF00250555
 4.
Manoussos
Grillakis, Jalal
Shatah, and Walter
Strauss, Stability theory of solitary waves in the presence of
symmetry. I, J. Funct. Anal. 74 (1987), no. 1,
160–197. MR
901236 (88g:35169), http://dx.doi.org/10.1016/00221236(87)900449
 5.
Manoussos
Grillakis, Jalal
Shatah, and Walter
Strauss, Stability theory of solitary waves in the presence of
symmetry. II, J. Funct. Anal. 94 (1990), no. 2,
308–348. MR 1081647
(92a:35135), http://dx.doi.org/10.1016/00221236(90)90016E
 6.
T.
D. Lee, Particle physics and introduction to field theory,
Contemporary Concepts in Physics, vol. 1, Harwood Academic Publishers,
Chur, 1981. Translated from the Chinese. MR 633154
(83d:81001)
 7.
Jerrold
E. Marsden, Lectures on mechanics, London Mathematical Society
Lecture Note Series, vol. 174, Cambridge University Press, Cambridge,
1992. MR
1171218 (93f:58078)
 8.
Kevin
McLeod, Uniqueness of positive radial
solutions of Δ𝑢+𝑓(𝑢)=0 in 𝑅ⁿ.
II, Trans. Amer. Math. Soc.
339 (1993), no. 2,
495–505. MR 1201323
(94b:35105), http://dx.doi.org/10.1090/S0002994719931201323X
 9.
Charles
W. Misner, Kip
S. Thorne, and John
Archibald Wheeler, Gravitation, W. H. Freeman and Co., San
Francisco, Calif., 1973. MR 0418833
(54 #6869)
 10.
Jalal
Shatah, Stable standing waves of nonlinear KleinGordon
equations, Comm. Math. Phys. 91 (1983), no. 3,
313–327. MR
723756 (84m:35111)
 11.
Walter
A. Strauss, Existence of solitary waves in higher dimensions,
Comm. Math. Phys. 55 (1977), no. 2, 149–162. MR 0454365
(56 #12616)
 12.
Walter
A. Strauss, Nonlinear wave equations, CBMS Regional Conference
Series in Mathematics, vol. 73, Published for the Conference Board of
the Mathematical Sciences, Washington, DC, 1989. MR 1032250
(91g:35002)
 13.
D. Stuart, Modulational approach to stability of nontopological solitons in semilinear wave equations, to appear in J. Math. Pures Appl.
 14.
D. Stuart, The geodesic hypothesis and nontopological solitons on pseudoRiemannian manifolds, University of Cambridge preprint, 2000.
 15.
D. Stuart, Modulational stability of solitary waves in Hamiltonian systems, in preparation.
 16.
D. Stuart, Geodesics and the Einstein nonlinear wave system, in preparation.
 17.
S. Weinberg, Gravitation and Cosmology, Wiley, New York, 1972.
 18.
Michael
I. Weinstein, Nonlinear Schrödinger equations and sharp
interpolation estimates, Comm. Math. Phys. 87
(1982/83), no. 4, 567–576. MR 691044
(84d:35140)
 19.
M. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal. 16 (1985), 472491.
 1.
 T. Benjamin, The stability of solitary waves, Proceedings of the Royal Society, A328 (1972), 153179. MR 49:3348
 2.
 H. Berestycki, P. L. Lions, and L. Peletier, An ODE approach to existence of positive solutions for semilinear problems in , Indiana Univ. Math. J., 30 (1983), 141157. MR 83e:35009
 3.
 H. Berestycki and P. L. Lions, Nonlinear scalar field equations, I, Arch. Rational. Mech. Anal. 82 (1983), 313345. MR 84h:35054a
 4.
 M. Grillakis, W. Strauss, and J. Shatah, Stablility theory of solitary waves in the presence of symmetry, I, J. Funct. Anal. 74 (1987), 160197. MR 88g:35169
 5.
 M. Grillakis, W. Strauss, and J. Shatah, Stablility theory of solitary waves in the presence of symmetry, II, J. Funct. Anal. 94 (1990), 308348. MR 92a:35135
 6.
 T. D. Lee, Particle physics and introduction to field theory, Harwood, Chur, 1981. MR 83d:81001
 7.
 J. Marsden, Lectures on mechanics, LMS Lecture Note Series 174. MR 93f:58078
 8.
 K. Mcleod, Uniqueness of positive radial solutions of in , Trans. AMS 339 (1993), 495505. MR 94b:35105
 9.
 C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, Freeman, San Francisco, 1973. MR 54:6869
 10.
 J. Shatah, Stable standing waves of nonlinear KleinGordon equations, Comm. Math. Phys. 91 (1983), 313327. MR 84m:35111
 11.
 W. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), 149162. MR 56:12616
 12.
 W. Strauss, Nonlinear wave equations, Amer. Math. Soc., Providence, RI, 1989. MR 91g:35002
 13.
 D. Stuart, Modulational approach to stability of nontopological solitons in semilinear wave equations, to appear in J. Math. Pures Appl.
 14.
 D. Stuart, The geodesic hypothesis and nontopological solitons on pseudoRiemannian manifolds, University of Cambridge preprint, 2000.
 15.
 D. Stuart, Modulational stability of solitary waves in Hamiltonian systems, in preparation.
 16.
 D. Stuart, Geodesics and the Einstein nonlinear wave system, in preparation.
 17.
 S. Weinberg, Gravitation and Cosmology, Wiley, New York, 1972.
 18.
 M. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), 567576. MR 84d:35140
 19.
 M. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal. 16 (1985), 472491.
Similar Articles
Retrieve articles in Electronic Research Announcements of the American Mathematical Society
with MSC (2000):
58J45,
37K45,
35Q75,
83C10,
37K40
Retrieve articles in all journals
with MSC (2000):
58J45,
37K45,
35Q75,
83C10,
37K40
Additional Information
David M. A. Stuart
Affiliation:
Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 OWA, UK
Email:
D.M.A.Stuart@damtp.cam.ac.uk
DOI:
http://dx.doi.org/10.1090/S1079676200000846
PII:
S 10796762(00)000846
Keywords:
Wave equations on manifolds,
nontopological solitons,
stability,
solitary waves.
Received by editor(s):
April 30, 2000
Published electronically:
October 5, 2000
Additional Notes:
The author acknowledges support from EPSRC Grant AF/98/2492.
Communicated by:
Michael Taylor
