Some nonexistence results for higher-order evolution inequalities in cone-like domains

Author:
Gennady G. Laptev

Journal:
Electron. Res. Announc. Amer. Math. Soc. **7** (2001), 87-93

MSC (2000):
Primary 35G25; Secondary 35R45, 35K55, 35L70

DOI:
https://doi.org/10.1090/S1079-6762-01-00098-1

Published electronically:
October 15, 2001

MathSciNet review:
1856890

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Nonexistence of global (positive) solutions of semilinear higher-order evolution inequalities

with , in cone-like domains is studied. The critical exponents are found and the nonexistence results are proved for . Remark that the corresponding result for (parabolic problem) is sharp.

**1.**D. Del Santo, V. Georgiev and E. Mitidieri, Global existence of the solutions and formation of singularities for a class of hyperbolic systems, In:*``Geometric Optics and Related Topics''*(Eds. F. Colombini & N. Lerner), Progress in Nonlinear Differential Equations and Their Applications, Vol. 32, pp. 117-140. Birkhäuser, Boston, 1997.**2.**K. Deng and H. A. Levine,*The role of critical exponents in blow-up theorems: the sequel*, J. Math. Anal. Appl.**243**(2000), 85-126. MR**2001b:35031****3.**V. A. Galaktionov and H. A. Levine,*A general approach to critical Fujita exponents in nonlinear parabolic problems*, Nonlinear Anal.**34**(1998), 1005-1027. MR**99f:35079****4.**V. A. Galaktionov and S. I. Pohozaev,*Blow-up, critical exponents and asymptotic spectra for nonlinear hyperbolic equations*: Math. Preprint Univ. of Bath 00/10, 2000.**5.**F. John,*Nonlinear wave equations, formation of singularities*, University Lecture Ser.**2**, Amer. Math. Soc., Providence, RI, 1990. MR**91g:35001****6.**V. A. Kondrat'ev,*Boundary value problems for elliptic equations in domains with conical and angular points*, Trudy Moscov. Mat. Obshch.**16**(1967), 209-292. MR**37:1777****7.**V. V. Kurta,*On the absence of positive solutions to semilinear elliptic equations*, Tr. Mat. Inst. Steklova**227**(1999), 162-169; English transl., Proc. Steklov Inst. Math.**1999**, no. 4 (227), 155-162. MR**2001h:35062****8.**G. G. Laptev,*Absence of global positive solutions for systems of semilinear elliptic inequalities in cone*, Izv. Ross. Akad. Nauk Ser. Mat.**64**(2000), 108-124. CMP**2001:09****9.**G. G. Laptev,*On nonexistence for a class of singular semilinear differential inequalities*, Tr. Mat. Inst. Steklova**232**(2001), 223-235.**10.**G. G. Laptev,*Nonexistence results for semilinear parabolic differential inequalities in cone*, Mat. Sb., to appear.**11.**G. G. Laptev,*Nonexistence of global solutions for higher-order evolution inequalities in unbounded cone-like domains*, preprint.**12.**H. A. Levine,*The role of critical exponents in blow-up theorems*, SIAM Rev.**32**(1990), 262-288. MR**91j:35135****13.**E. Mitidieri and S. I. Pohozaev,*Absence of positive solutions for quasilinear elliptic problems on*, Tr. Mat. Inst. Steklova**227**(1999), 192-222; English transl., Proc. Steklov Inst. Math.**1999**, no. 4 (227), 186-216. MR**2001g:35082****14.**E. Mitidieri and S. I. Pohozaev,*A priori estimates and nonexistence of solutions to nonlinear partial differential equations and inequalities*, Tr. Mat. Inst. Steklova**234**(2001).**15.**S. I. Pohozaev and A. Tesei,*Blow-up of nonnegative solutions to quasilinear parabolic inequalities*, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl.**11**(2000), 99-109. MR**2001k:35306****16.**A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov and A.P. Mikhailov,*Blow-up in quasilinear parabolic equations*, Nauka, Moscow, 1987; English transl., Walter de Gruyter, Berlin/New York, 1995. MR**89a:35002**; MR**96b:35003****17.**L. Veron and S. I. Pohozaev,*Blow-up results for nonlinear hyperbolic inequalities*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4).**29**(2000), 393-420.**18.**Qi Zhang,*Blow-up results for nonlinear parabolic equations on manifolds*, Duke Math. J.**97**(1999), 515-539. MR**2000d:35107****19.**Qi Zhang,*Blow up and global existence of solutions to an inhomogeneous parabolic system*, J. Differential Equations**147**(1998), 155-183. MR**99d:35073**

Retrieve articles in *Electronic Research Announcements of the American Mathematical Society*
with MSC (2000):
35G25,
35R45,
35K55,
35L70

Retrieve articles in all journals with MSC (2000): 35G25, 35R45, 35K55, 35L70

Additional Information

**Gennady G. Laptev**

Affiliation:
Department of Function Theory, Steklov Mathematical Institute, Gubkina Street 8, Moscow, Russia

Email:
laptev@home.tula.net

DOI:
https://doi.org/10.1090/S1079-6762-01-00098-1

Received by editor(s):
April 7, 2001

Published electronically:
October 15, 2001

Additional Notes:
The author was supported in part by RFBR Grant #01-01-00884.

Communicated by:
Guido Weiss

Article copyright:
© Copyright 2001
American Mathematical Society