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Abstract. We introduce the notion of entropy pseudonorm for an action of
R

n and prove that it vanishes for the group actions associated with a large
class of integrable Hamiltonian systems.

1. Entropy pseudonorm

Let W be a smooth manifold and Φ : (Rn, +) → Diff(W ) a smooth action on
it. Assume there exists a compact Φ-invariant exhaustion of W , i.e., W =

⋃∞
i=1 Ki

with compact Φ-invariant sets Ki. Define the following function on R
n (where htop

is the topological entropy):

ρΦ(v) = htop(Φ(v)), v ∈ R
n.

This function is a pseudonorm on R
n: ρΦ(v) is well defined because, under our

hypothesis, the entropy hd of [8] does not depend on the distance function d on W ,
homogeneity is standard, and the triangle inequality follows from the Hu formula
[16]. We call ρΦ the entropy pseudonorm.

We will investigate it in the case of the Poisson action corresponding to an
integrable Hamiltonian system on a symplectic manifold (W 2n, ω). Namely, let
(W 2n, ω) possess pairwise Poisson-commuting functions I1, I2, . . . , In, which are
functionally independent almost everywhere.

Denote by ϕτ
i the time τ shift along the Hamiltonian vector field of the function

Ii. The maps ϕτ
i commute and therefore generate the Poisson action of the group

(Rn, +),

Φ(τ1, . . . , τn) def= ϕτ1
1 ◦ · · · ◦ ϕτn

n : W 2n → W 2n,

with the corresponding momentum map Ψ = (I1, . . . , In) : W 2n → R
n; see [1].

The entropy pseudonorm ρΦ vanishes in the following important cases (we discuss
these conditions at the end of the paper, in Section 3):

− Williamson-Vey-Eliasson-Ito nondegenerate singularities [12, 18];
− Taimanov nondegeneracy condition [33].

In the first case vanishing of topological entropy of the Hamiltonian flow was
proved in [29]; in the second case, in [33]. Since there is nothing special about
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the Hamiltonian in these situations, it can be changed to any of the integrals and
ρΦ ≡ 0 follows. Also in [28, 9] vanishing of htop was proven for the cases of

− Systems integrable with periodic integrals;
− Collectively integrable systems (the definition is in [14]).

It is not difficult to see that in both cases the entropy pseudonorm ρΦ vanishes as
well.

Note that Liouville integrability does not imply vanishing of topological entropy;
see [7] (more examples in [10]). For these examples the entropy pseudonorm is
nonzero, but degenerate. However, it is possible to construct integrable examples
[20] such that ρΦ is a norm.

In the present paper we prove vanishing of the entropy pseudonorm for another
class of integrable systems. These systems have recently been actively studied in
mathematical physics in the framework of the theory of separation of variables.
In different contexts they are called Benenti systems [17], L-systems [3, 4], co-
factor systems [23], or quasi-bi-Hamiltonian systems [11]. The Benenti systems
are certain integrable Hamiltonian systems on T ∗M with Hamiltonian of the form
H = Kg + V , where Kg : T ∗M → R, Kg(x, p) = 〈p, p〉g, is twice the kinetic energy
corresponding to a Riemannian metric g and V : M → R is a potential. Important
feature of these systems is that every integral is a sum of a function quadratic in
momenta and a function on M . Moreover, the quadratic forms corresponding to
the quadratic-in-momenta terms are simultaneously diagonalizable. We will pro-
vide precise definitions, the conditions on the metric g and potential V as well as
formulas for integrals in Section 2.1, where we also explain how these systems are
related to the theory of geodesic equivalence.

Theorem 1. Let M be a compact connected manifold. Then the entropy pseudo-
norm of the action Φ associated with any Benenti integrable Hamiltonian system
on T ∗M vanishes: ρΦ ≡ 0.

The class of mechanical systems covered by Theorem 1 contains Lagrange spin-
ning tops, the von Neumann system, the Braden system, Bogoyavlensky systems,
some Manakov systems, and many other quadratically integrable (Stäckel) systems.
For most of them our vanishing result is new.

For geodesic flows (V ≡ 0) vanishing of htop(H) was proven in our earlier paper
[21]. Theorem 1 generalizes the result of [21] in the following two directions. First,
it includes the potential energy in the picture. Second, it shows that the topolog-
ical entropy of the Hamiltonian flow of every integral (not only the Hamiltonian)
vanishes.

Our result has topological implications (for example, due to [31]). We discussed
some of them in [21] (see also [25, 26, 27]). In particular, if a manifold M possesses
a Benenti-integrable Hamiltonian system, then it must be covered by a product of
a rationally elliptic manifold and a torus: Mn = Qk×̃Tn−k. Indeed, by the de-
scription from Section 2.1 we know that the kinetic energy Kg corresponding to a
Benenti system is also an integrable Hamiltonian and, moreover, for the correspond-
ing Riemannian metric g, there exists another, ḡ, which is geodesically equivalent
to g and is strictly nonproportional to it. Thus the claim follows from Theorem 7
of [21].

There are also many dynamical implications. Actually, for large values of the
Hamiltonian H and the integrals It (with t ≤ min Sp(L) to achieve positivity of the
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quadratic forms; see Section 2.1), these functions behave like Riemannian metrics
on M because of the Maupertuis principle [1, 5]. Their geodesic flows commute
and have zero topological entropy. This implies, for all of them, a subexponential
growth of the volume of balls in the universal cover (Manning’s inequality), of the
number of geodesic arcs joining two generic points (Mañé’s formula), etc.; see [30]
(Sections 3.4, 3.5, and 4.2).

An outline of the proof for Theorem 1 will be presented in Section 2.2. We
describe singular orbits of the Poisson action and show that the restriction of our
integrable system to every singular orbit is a subsystem of a Benenti system on a
manifold of smaller dimension. Then we apply induction on the dimension. Again
as in the case of geodesic flows, the set of singular points can be very complicated:
If n

def= dim(M) > 2, then there exists a singular point over every point of M and
the set of singular points in Ψ−1(c) can project to a fractal in Mn of Hausdorff
dimension > n − 1.

We also discuss vanishing of other entropies. The well-known entropy for the
group action htop(Φ) [13] vanishes for Benenti systems by elementary reasons:
htop(Φ) = 0. Actually, if this entropy is positive, then (directly from the defi-
nition) all entropies of subgroup actions are infinite; in particular, htop(H) = +∞,
which is incorrect.

However, there is another definition of the entropy for a group action hU (Φ),
which behaves naturally with respect to restrictions to subgroup actions [15]. Here
U is the cube [−1, 1]n ⊂ R

n that defines the strongly regular system (U, 2U, 3U, . . . )
exhausting our group (Rn, +). With respect to this definition and the action Φ of
R

n associated to a Benenti integrable system we have (see [15] for the definition
and properties)

hU (Φ) = 0.

This follows from the inequalities

max
1≤k≤n

htop(Ik) ≤ sup
v∈U

ρΦ(v) ≤ hU (Φ) ≤ n · max
1≤k≤n

htop(Ik).

Here the first inequality is obvious, the second is Proposition 2.6 from [15], and
the third easily follows from the definition of hU . Thus vanishing of the entropy
pseudonorm ρΦ is equivalent to vanishing of the entropy hU (Φ).

2. Definitions and sketch of the proof

2.1. Benenti systems and geodesically equivalent metrics. Let g, ḡ be two
Riemannian metrics on a connected manifold M of dimension n, and �g : TM →
T ∗M , �ḡ : T ∗M → TM the corresponding bundle morphisms. We regard the
bundle morphism �ḡ ◦ �g : TM → TM as a (1, 1)-tensor.

The metrics g, ḡ are called geodesically equivalent if every geodesic of ḡ,
regarded as an unparameterized curve, is a geodesic of g. They are said to be
strictly nonproportional at P ∈ Mn if the spectrum Sp(�ḡ ◦ �g) ⊂ R+ is simple
at P .

Consider the (1, 1)-tensor L
def= (�ḡ ◦�g)/ n+1

√
det(�ḡ ◦ �g) : TM → TM . For every

t ∈ R, consider the (1, 1)-tensor St
def= det(L − t Id) (L − t Id)−1. The family St is

polynomial in t of degree n − 1.
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We will always identify the tangent and the cotangent bundle of M with the
help of �g. This identification gives us a symplectic form and a Poisson structure
on TM .

Theorem 2 ([24, 25]). If g, ḡ are geodesically equivalent, then for all t1, t2 ∈ R

the functions

Iti
: TM → R, Iti

(v) def= g(Sti
(v), v)

are commuting integrals for the geodesic flow of g.
If, in addition, the metrics are strictly nonproportional at one point, then this

is so for almost every point. Consequently, for all t1 < · · · < tn the integrals Iti

are functionally independent almost everywhere so that the geodesic flow of g is
Liouville-integrable.

It is possible to add potential energy to the picture. In local coordinates, it was
done in [2] (see also [3, 4, 6]); other approaches are given in [17] and [11].

Let g and ḡ be geodesically equivalent Riemannian metrics on Mn. A smooth
function V : Mn → R will be called compatible with respect to g and ḡ if the
1-form

dV ◦ (L − trace(L)Id)

is exact. For every pair of geodesically equivalent metrics that are not affine equiv-
alent, we can prove the existence of a nonconstant compatible V (actually of a
continuum-dimensional family).

It is possible to show that if there exists a compatible function V , then there
exists a family Vt, t ∈ R, of smooth functions on Mn such that the following two
conditions are fulfilled:

(1)

{
Vt is a polynomial in t of degree ≤ n − 1,
dV ◦ St = dVt for every t ∈ R.

The potential V determines the family Vt up to (addition of) a constant polynomial
P (t) of degree ≤ n − 1. Note that the family Vt also defines the function V up to
a constant. In fact, the function V is the coefficient of tn−1.

Locally, the existence of such Vt was explained in [4]. From the normal form for
the functions Vt, given in Theorem 4 below, it is clear that, near generic points,
we have a great deal of freedom in choosing the functions V and Vt: They depend
on arbitrary n functions of one variable. Globally on M the existence of such
Vt is nontrivial, for instance because the functions Xi from Theorem 4 can have
singularities near the bifurcation points of the spectrum Sp(L) of L.

Theorem 3 ([3, 4, 11, 6]). Let g, ḡ on a connected Mn be geodesically equivalent.
Suppose V is compatible with respect to g, ḡ. Consider a family Vt of functions
satisfying conditions (1). Then for all t1, t2 ∈ R the functions Îti

def= Iti
+ Vti

are
commuting integrals for the Hamiltonian system with Hamiltonian Kg + V , where
Kg is twice the kinetic energy corresponding to g. If, in addition, the metrics are
strictly nonproportional at least at one point, then for all t1 < · · · < tn the integrals
Îti

are functionally independent almost everywhere.

We will call a Benenti system the integrable system on TMn generated by
the integrals Ît1 , . . . , Îtn

from Theorem 3 provided the metrics g, ḡ are strictly
nonproportional at least at one (and hence at almost every) point.
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2.2. Idea of the proof of Theorem 1. We use induction on the dimension. If the
dimension of the manifold is n < 2, Theorem 1 is trivial. Assume that Theorem 1
is true for every dimension less than n and consider dimM = n.

Suppose the topological entropy of the Hamiltonian flow corresponding to an
integral Ît is not zero. Then, by the variational principle, there exists an ergodic
Ît-invariant Borel probability measure µ such that hµ(g) 
= 0 [19]. By ergodicity
the support Supp(µ) is contained in a connected component of some fiber Ψ−1(c).
If Supp(µ) contains a point P with rank(dÎt1 , . . . , dÎtn

) = n, then the orbit of P
is diffeomorphic to a cylinder over torus, Φ(Rn, P ) � T k × R

n−k, 0 ≤ k ≤ n [1].
By the implicit function theorem, a small neighborhood of a point P in Supp(µ)
lies in the orbit Φ(Rn, P ). Since Supp(µ) is a closed invariant subset and its point
P cannot be wandering, the support is diffeomorphic to a subtorus T l, l ≤ k, for
which the flow of Ît is conjugate to a standard linear flow. This implies that the
entropy hµ vanishes.

Now suppose that every point of Supp(µ) is singular, so that

rank(dÎt1 , . . . , dÎtn
) ≤ k < n

and the rank equals k almost everywhere on the support of µ. In this case, we can
reduce the dimension. Namely, there exists a closed proper submanifold Nk ⊂ Mn

with induced Benenti system and a subgroup R
k ⊂ R

n with Φ̃ = Φ|Rk such that
Supp(µ) is Φ̃-invariant and Φ̃| Supp(µ) is a subsystem of the Poisson action corre-
sponding to the Benenti system on Nk. Then hµ = 0 by the induction assumption.

This is actually the main point of the proof. Precisely the same logic was used
in [21]. To a certain extent, not only the statement, but also most of the proofs
from [21] can be generalized to our more general setting. In Sections 2.3, 2.4 we will
explain how to construct these closed submanifolds under the additional assumption
that all eigenvalues of L are nonconstant. This additional assumption makes the
proof much shorter (for instance, because in this case we can take k = n− 1; in the
paper [21] the longest part was dedicated to dealing with constant eigenvalues of
L), so that we can hope to make the main ideas of the proof clear to everyone.

2.3. Benenti systems and singular points in Levi-Civita coordinates.

Theorem 4 (follows from [22, 6, 4]). Let g and ḡ be geodesically equivalent Rie-
mannian metrics on Mn. Suppose they are strictly nonproportional at P ∈ Mn.
Let the function V be compatible with respect to g and ḡ, and suppose the functions
Vt satisfy conditions (1).

Then in a small neighborhood U ⊂ Mn of P there exist coordinates (called Levi-
Civita coordinates) such that the metrics g, ḡ and the functions Vt are given by the
formulas

ds2
g =

n∑
i=1

(−1)i−1
∏
j �=i

(λj − λi) dx2
i ,(2)

ds2
ḡ =

n∑
i=1

(−1)i−1

λi

∏
α λα

∏
j �=i

(λj − λi) dx2
i ,(3)

Vt =
n∑

i=1

(−1)i−1Xi

∏
j �=i

λj − t

λj − λi
,(4)
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where, for every i, λi and Xi are functions of one variable xi. If in a neighborhood
of almost every point the metrics g, ḡ and the functions Vt are given by (2)–(4),
then the metrics are geodesically equivalent and the functions satisfy conditions (1)
with respect to some compatible function V .

In the Levi-Civita coordinate system, L is diagonal Diag(λ1, . . . , λn). We will
always assume that, at every point, the eigenvalues λi of L are indexed according
to their value, so that λi(P ) ≤ λi+1(P ) for every P ∈ Mn and every 1 ≤ i ≤ n− 1.

We see that the metric g and the tensor L define the Levi-Civita coordinate
system up to a shift of the origin and a change of the direction of coordinate axes.
Indeed, the vector vi

def= ∂
∂xi

is determined up to sign by the conditions{
Lvi = λivi,

g(vi, vi) = (−1)i−1
∏

j �=i (λj − λi).

In this coordinate system the integrals Ît = It +Vt (as functions of the cotangent
bundle) are given by

(5) Ît =
n∑

i=1

(−1)i−1(p2
i + Xi)

∏
j �=i

λj − t

λj − λi
.

Note that the functions Xi can be invariantly obtained from Vt and λi, namely

Xi(P ) = (−1)i−1Vλi(P )(P ).

Let Î ′t = d
dt Ît. For every t the function Î ′t is a linear combination of the integrals

It1 , . . . , Itn
.

Corollary 1. Let the metrics g and ḡ be geodesically equivalent on a closed con-
nected manifold M and strictly nonproportional at P ∈ M . If a point (P, ξ) ∈ TM
is singular with respect to the Poisson action Φ corresponding to the integrals
Îti

= Iti
+ Vti

, then d(P,ξ)Îλ̃i
= 0 for some i, where λ̃i

def= λi(P ). In addition,
in Levi-Civita coordinates the i-th component of ξ vanishes: ξi = 0.

Proof. Consider the function Îλi(x). Expressed in Levi-Civita coordinates on the
cotangent bundle T ∗M , it equals (−1)i−1

(
p2

i + Xi(xi)
)
, so that its differential is

(−1)i−1 ( 2pi dpi + X ′
i(xi)dxi). On the other hand,

dÎλ̃i
= dÎλi(xi) − Î ′

λ̃i
dλi(xi) = (−1)i−12pidpi +

(
(−1)i−1X ′(xi) − λ′

i(xi) Î ′
λ̃i

)
dxi.

Thus if a linear combination
∑

µidÎλ̃i
vanishes, then for every µi 
= 0 the corre-

sponding dÎλ̃i
vanishes. Then its dpi and dxi components vanish, yielding pi = 0

(which implies ξi = 0). �

2.4. Submanifolds Mi and Singi. In this section we assume that g and ḡ are
geodesically equivalent metrics on a closed connected Mn, that every eigenvalue
λi of L is nonconstant, and that the functions Vt satisfy (1) with respect to a
compatible V . For i = 1, . . . , n − 1, put

Regi = {x ∈ M : λi(x) 
= λi+1(x)},
and for i = 0, let Reg0 = Mn. At every point of Regi ∩Regi−1 the eigenvalue λi is

simple. In particular, at every point of Reg def=
⋂

i Regi, the eigenvalues λ1, . . . , λn

are mutually distinct.
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For every x ∈ Regi ∩Regi−1 denote by Di(x) ⊂ TxMn the subspace spanned
by the eigenspaces corresponding to λj , j 
= i. The distribution Di is smooth.
By Theorem 4, it is integrable in Regi ∩Regi−1. Denote by Mi(P ) its integral
manifold containing P ∈ Mn (beware of our using the notation DC(i) and MC(i) in
[21] instead of the present Di and Mi). By Theorem 4 the functions λi and Xi are
constant along Mi(P ).

For i = 1, . . . , n − 1, let λ̄i = 1
2 (maxx∈M λi + minx∈M λi+1). By Corollary 1

from [25], for every point P ∈ Mn we have λi(P ) ≤ λ̄i ≤ λi+1(P ). Consider

Singi
def= {P ∈ Mn : (λi(P ) − λ̄i)(λi+1(P ) − λ̄i) = 0}.

In [25] (see Theorem 5 there) it was proven that if Singi is nonempty, then,
under the assumption that all λi are nonconstant, it is a connected submanifold
of codimension 1. Moreover, almost all points of Singi belong to Reg and the
intersection Singi ∩ Regi (Singi ∩ Regi+1, respectively) is a finite union of leaves
Mi (Mi+1, respectively).

In [21] (see Lemma 2 there) we proved that if the function λi is not constant, then
every Mi(P ) is a closed submanifold or is a part of Singi or Singi+1. Combining
this observation and Corollary 1, we obtain that the projection of every singular
orbit belongs to some compact Mi or to one of Singi. Since our measure µ from
§2.2 is ergodic, Supp(µ) belongs to the closure of an orbit. Then the projection of
Supp(µ) belongs to a compact submanifold of smaller dimension.

The last step is to explain that the dynamics on Supp(µ) is a subsystem of a
certain Benenti system on this submanifold. Almost every point of Singi belongs
to Mi ∪Mi+1, so it is sufficient to consider only Mi. Since Mi ∩ Reg is dense in
Mi, we can use Levi-Civita coordinates. Since T ∗Mi is a symplectic submanifold
of T ∗Mn, the claim follows from the fact that the restrictions of the integrals Ît

to T ∗Mi are linear combinations of the integrals of the induced Benenti system on
Mi. This assertion can be checked in Levi-Civita coordinates using formula (5).

In fact, the family Vt is determined up to a constant polynomial of degree n − 1.
Since the function Xi is constant on Mi(P ), we can assume without loss of gener-
ality that Xi = 0 on Mi(P ). Since the coordinate pi vanishes along T ∗Mi(P ) and
the function λi is constant on Mi(P ), the restriction of the integral Ît = It + Vt to
T ∗Mi(P ) is equal to

Ît =
∑
k �=i

(−1)k−1(p2
k + Xk)

∏
j �=k

λj − t

λj − λk

= (λi − t) ·
[∑

k �=i

(−1)k−1−θ(k−i)(p2
k + Xk)

|λi − λk|
∏

j �=k,i

λj − t

λj − λk

]
,

where θ(x) is the Heaviside function, so that ψ(k) = k − θ(k − i) enumerates
{1, . . . , n} \ {i}.

By the direct calculation we check that, for every t, the above expression in square
brackets is a linear combinations of the integrals Înew

τ1
, . . . , Înew

τn−1
of the Benenti

system corresponding to geodesically equivalent metrics gnew def= g|Mi(P )
, ḡnew def=

λiḡ|Mi(P )
on Mi(P ) and the family V new

t : Mi(P ) → R, V new
t

def= 1
λi−tVt|Mi(P ).

The facts that the metrics gnew, ḡnew are geodesically equivalent and strictly non-
proportional at least at one point and that the family Vt satisfies condition (1)
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follow from Theorem 4, because on Mi(P ) the coefficient |λk − λi| depends on xk

only and therefore can be “hidden” in the corresponding dxk and Xk. Thus our
system is a subsystem of a Benenti system and the induction hypothesis finishes
the proof of Theorem 1.

3. Discussion

It is clear that all the difficulties with vanishing of entropies for integrable systems
are due to a complicated singularity set (we explained essentially in §2.2 that the
set of regular points bears no entropy), as positive-entropy examples of [7, 20, 9, 10]
demonstrate. In all good cases, where vanishing of the entropy has been proven,
some stratification of singularities was achieved; see, e.g., [28, 29, 33, 9, 21]. Here
we formulate a scheme for most vanishing results.

We consider systems on noncompact W 2n, but such that the variational principle
holds. This is, for instance, the case when W 2n admits an exhaustion by compact
invariant sets (other cases are discussed in [32]). Define the following Φ-invariant
subsets of W 2n:

Σk = {x ∈ W 2n | rank(dxΦ) = k}.

Theorem 5. Suppose for every k < n we can decompose Σk = Σ+
k ∪Σ−

k , where Σ+
k

is a closed invariant subset of Σk and Σ−
k consists of nonrecurrent points of Φ(v) for

almost every v ∈ R
n. Suppose the momentum map Ψ : Σ+

k → R
n can be factorized

to the composition of continuous maps πk : Σ+
k → Ak to a Hausdorff space Ak and

σk : Ak → R
n such that each fiber Σα

k = π−1
k (α) is a Φ-invariant k-dimensional

submanifold of W 2n. Then the entropy pseudonorm vanishes: ρΦ ≡ 0.

Proof. By the variational principle it suffices to prove hµ(Φ(v)) = 0 for almost
every v and every Φ(v)-invariant ergodic measure µ. By ergodicity Ψ is constant
on the support of µ. Consequently, it suffices to prove that for every k the system
has zero entropy on Ψ−1(c) ∩ Σk. Since R(v) ∩ Σk ⊂ Σ+

k , where R(v) denotes the
set of Φ(v)-recurrent points, it is enough to show vanishing of entropy on the set
Σ+

k ∩ Ψ−1(c).
This set is foliated by the strata Σα

k , and hence µ must be supported on a single
connected component of it only. This component possesses a transitive Poisson
R

k-action and so is isomorphic to a torus T k (it cannot be a cylinder T k−l × R
l

because it consists of recurrent points) with quasi-periodic dynamics and hence
hµ(Φ(v)|Σ+

k ∩ Ψ−1(c)) = 0 implying the claim. �

The assumptions of Theorem 5 are satisfied for integrable systems with William-
son-Vey-Eliasson-Ito nondegenerate singularities (see [12, 18]) or with Taimanov
nondegeneracy condition [33].

Indeed, Taimanov’s condition is as follows: for every (n − k) × n matrix vij of
rank n − k the set

(6)
{

ξ ∈ Σk : ξ 
= 0 and
n∑

j=1

vij dξ(Ij) = 0 ∀i = 1, . . . , n − k
}

is a submanifolds of TM of dimension k. Clearly, if the Taimanov condition is
fulfilled, the space of the connected components of the sets

(7) Lk(c) def= Σk ∩ Ψ−1(c) = {ξ ∈ Σk : I1 = c1, . . . , In = cn}
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with induced topology is a Hausdorff space, so that the assumptions of Theorem 5
are automatically fulfilled.

The definition of Williamson-Vey-Eliasson-Ito nondegenerate singularities is com-
plicated and can be found, for example, in Section 1.8 of the book [5]. It is a
generalization of the notion “Morse singularity” for integrable systems. Locally,
the structure of the momentum mapping near Williamson-Vey-Eliasson-Ito nonde-
generate points is given by Eliasson-Ito theorem, which is a generalization of the
Morse lemma to the context of integrable Hamiltonian systems (Section 1.8.3 of
[5]). From this description, it is clear that the space of connected components of
the sets Lk(c) given by (7) with induced topology is again a Hausdorff space, so
that the assumptions of Theorem 5 are fulfilled.

Our induction approach implies that the singularities of Benenti systems are also
stratified in the manner of Theorem 5. It is feasible that a kind of good stratification
is necessary for vanishing of the entropies.
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