A new tower of RankinSelberg integrals
Authors:
David Ginzburg and Joseph Hundley
Journal:
Electron. Res. Announc. Amer. Math. Soc. 12 (2006), 5662
MSC (2000):
Primary 32N10
Published electronically:
May 16, 2006
MathSciNet review:
2226525
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We recall the notion of a tower of RankinSelberg integrals, and two known towers, making observations of how the integrals within a tower may be related to one another via formal manipulations, and offering a heuristic for how the functions should be related to one another when the integrals are related in this way. We then describe three new integrals in a tower on the group and find out which functions they represent. The heuristics also predict the existence of a fourth integral.
 [GeJ]
Stephen
Gelbart and Hervé
Jacquet, A relation between automorphic representations of
𝐺𝐿(2) and 𝐺𝐿(3), Ann. Sci.
École Norm. Sup. (4) 11 (1978), no. 4,
471–542. MR
533066 (81e:10025)
 [G1]
David
Ginzburg, A RankinSelberg integral for the adjoint representation
of 𝐺𝐿₃, Invent. Math. 105
(1991), no. 3, 571–588. MR 1117151
(92f:11070), http://dx.doi.org/10.1007/BF01232279
 [G2]
David
Ginzburg, On standard 𝐿functions for 𝐸₆ and
𝐸₇, J. Reine Angew. Math. 465 (1995),
101–131. MR 1344132
(96m:11040), http://dx.doi.org/10.1515/crll.1995.465.101
 [GH]
D. Ginzburg, J. Hundley, On spin functions for . To appear in J. Reine Angew. Math. ArXiv:math.NT/0512113.
 [GJ]
David
Ginzburg and Dihua
Jiang, Periods and liftings: from 𝐺₂ to
𝐶₃, Israel J. Math. 123 (2001),
29–59. MR
1835288 (2002f:11054), http://dx.doi.org/10.1007/BF02784119
 [GR]
D.
Ginzburg and S.
Rallis, A tower of RankinSelberg integrals, Internat. Math.
Res. Notices 5 (1994), 201 ff., approx.\ 8 pp.\
(electronic). MR
1270133 (96a:11047), http://dx.doi.org/10.1155/S107379289400022X
 [GRS]
David
Ginzburg, Stephen
Rallis, and David
Soudry, On the automorphic theta representation for simply laced
groups, Israel J. Math. 100 (1997), 61–116. MR 1469105
(99c:11058), http://dx.doi.org/10.1007/BF02773635
 [JS]
Hervé
Jacquet and Joseph
Shalika, Exterior square 𝐿functions, Automorphic
forms, Shimura varieties, and 𝐿functions, Vol.\ II (Ann Arbor, MI,
1988) Perspect. Math., vol. 11, Academic Press, Boston, MA, 1990,
pp. 143–226. MR 1044830
(91g:11050)
 [K]
V.
G. Kac, Some remarks on nilpotent orbits, J. Algebra
64 (1980), no. 1, 190–213. MR 575790
(81i:17005), http://dx.doi.org/10.1016/00218693(80)901416
 [S]
Freydoon
Shahidi, On certain 𝐿functions, Amer. J. Math.
103 (1981), no. 2, 297–355. MR 610479
(82i:10030), http://dx.doi.org/10.2307/2374219
 [GeJ]
 S. Gelbart, H. Jacquet, A relation between automorphic representations of and . Ann. Sci. Ecole Norm. Sup. (4) 11 (1978), no. 4, 471542. MR 0533066 (81e:10025)
 [G1]
 D. Ginzburg, A RankinSelberg integral for the adjoint representation of , Invent. Math. 105 (1991), 571588. MR 1117151 (92f:11070)
 [G2]
 D. Ginzburg, On standard functions for and . J. Reine Angew. Math. 465 (1995), 101131. MR 1344132 (96m:11040)
 [GH]
 D. Ginzburg, J. Hundley, On spin functions for . To appear in J. Reine Angew. Math. ArXiv:math.NT/0512113.
 [GJ]
 D. Ginzburg, D. Jiang, Periods and liftings: From to . Israel J. of Math. 123 (2001), 2959. MR 1835288 (2002f:11054)
 [GR]
 D. Ginzburg, S. Rallis, A tower of RankinSelberg integrals. IMRN 5 (1994), 201208. MR 1270133 (96a:11047)
 [GRS]
 D. Ginzburg, S. Rallis, D. Soudry, On the automorphic theta representation for simply laced groups. Israel J. of Math. 100 (1997), 61116. MR 1469105 (99c:11058)
 [JS]
 H. Jacquet, J. Shalika, Exterior square functions, automorphic forms, Shimura varieties, and functions, Vol. 2. Academic Press, 1990, pp. 143226. MR 1044830 (91g:11050)
 [K]
 V. Kac, Some remarks on nilpotent orbits. J. of Algebra 64 (1980), 190213. MR 0575790 (81i:17005)
 [S]
 F. Shahidi, On certain functions. Amer. J. Math. 103 (1981), no. 2, 297355. MR 0610479 (82i:10030)
Similar Articles
Retrieve articles in Electronic Research Announcements of the American Mathematical Society
with MSC (2000):
32N10
Retrieve articles in all journals
with MSC (2000):
32N10
Additional Information
David Ginzburg
Affiliation:
School of Mathematical Sciences, Sackler Faculty of Exact Sciences, TelAviv University, TelAviv 69978, Israel
Email:
ginzburg@post.tau.ac.il
Joseph Hundley
Affiliation:
Mathematics Department, Penn State University, University Park, PA 16802
Email:
hundley@math.psu.edu
DOI:
http://dx.doi.org/10.1090/S1079676206001600
PII:
S 10796762(06)001600
Received by editor(s):
October 12, 2005
Published electronically:
May 16, 2006
Communicated by:
Barry Mazur
Article copyright:
© Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
