Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

Minimal representations of exceptional $p$-adic groups


Author: Karl E. Rumelhart
Journal: Represent. Theory 1 (1997), 133-181
MSC (1991): Primary 22E35, 22E50, 17B25, 17B60; Secondary 11F70, 11F27, 17C50
DOI: https://doi.org/10.1090/S1088-4165-97-00009-5
Published electronically: June 19, 1997
MathSciNet review: 1455128
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [B-K] R. Brylinski and B. Kostant, `Lagrangian models of minimal representations of $E_6$, $E_7$ and $E_8$.' In Functional Analysis on the Eve of the 21st Century, in honor of I. M. Gelfand, Progress in Math. 131, Birkhäuser, 1995, pp. 13-63. MR 96m:22025
  • [C-M] D. Collingwood and W. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhhold, 1993. MR 94j:17001
  • [F] H. Freudenthal, `Beziehungen der $E_7$ and $E_8$ zur Oktavenebene, I, II.' Nederl. Akad. Wetensch. Proc. A 57 (1954), pp. 133-181, 363-368. MR 16:900d; MR 16:108b
  • [G-W] B. Gross and N. Wallach, `A distinguished family of unitary representations for the exceptional groups of real rank=4.' In Lie Theory and Geometry, in honor of Bertram Kostant, Progress in Math. 123, Birkhäuser, 1994, pp. 289-304. MR 96i:22034
  • [H-C] Harish-Chandra, `Admissible invariant distributions on reductive $p$-adic groups.' Queens Papers in Pure and Applied Math., 48 (1978), pp. 133-181. MR 58:28313
  • [H1] R. Howe, `Kirillov theory for compact $p$-adic groups.' Pacific J. Math. 73 (1977), pp. 133-181. MR 58:28314
  • [H2] R. Howe, `Topics in harmonic analysis on solvable algebraic groups.' Pacific J. Math. 73 (1977), pp. 383-435. MR 58:1007
  • [J] N. Jacobson, Structure and Representations of Jordan Algebras. Amer. Math. Soc., Providence, Rhode Island, 1968. MR 40:4330
  • [K] D. Kazhdan, `The minimal representation of $D_4$.' In Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory, in honor of Jacques Dixmier, Progress in Math. 92, Birkhäuser, 1990, pp. 125-158. MR 92i:22015
  • [K-S] D. Kazhdan and G. Savin, `The smallest representation of simply laced groups.' In Israel Math. Conference Proceedings, Piatetski-Shapiro Festschrift 2, 1990, pp. 209-233. MR 93f:22019
  • [Ko] M. Koecher, `Imbedding of Jordan algebras into Lie algebras.' Amer. J. Math. 89 (1967), pp. 133-181. MR 35:5480
  • [Ma] H. Matsumoto, `Sur les sous-groupes arithmétiques des groups semi-simples déployés.' Ann. Scient. Ec. Norm. Sup. 2 (1969), pp. 133-181. MR 39:1566
  • [M-V-W] C. Moeglin, M.-F. Vignéras and J.-L. Waldspurger, Correspondances de Howe sur un corps p-adique, Lecture Notes in Math. 1291, Springer-Verlag, 1987. MR 91f:11040
  • [M-W] C. Moeglin and J.-L. Waldspurger, `Modèles de Whittaker dégénérés pour des groupes $p$-adiques.' Math. Zeitschrift 196 (1987), pp. 133-181. MR 89f:22024
  • [Pl-R] V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory, Academic Press, 1994. MR 95b:11039
  • [Pr-R] G. Prasad and M.S. Raghunathan, `Topological central extensions of semi-simple groups over local fields.' Annals of Math. 119 (1984), pp. 133-181. MR 86e:20051a; MR 86e:20051b
  • [R] R. R. Rao, `On some explicit formulas in the theory of the Weil representation.' Pacific J. of Math. 157 (1993), pp. 133-181. MR 94a:22037
  • [Ru1] K. Rumelhart, Minimal Representations of Exceptional $p$-adic Groups. Harvard University Thesis, 1995.
  • [Ru2] K. Rumelhart, `An automorphic theta module for a rank two form of $E_6$.' Preprint.
  • [S1] G. Savin, `An analogue of the Weil representation for $G_2$.' J. Reine. und Angew. Math. 434 (1993), pp. 133-181. MR 94a:22038
  • [S2] G. Savin, `Dual pair $G_{{\mathcal {J}}} \times \operatorname {PGL}_2$; $G_{{\mathcal {J}}}$ is the automorphism group of the Jordan algebra ${\mathcal {J}}$.' Inventiones Math. 118 (1994), pp. 141-160. MR 95i:22017
  • [Sch] R. Schafer, An Introduction to Nonassociative Algebras, Academic Press, 1966. MR 35:1643
  • [St] R. Steinberg, Lectures on Chevalley Groups, Lecture Notes, Yale Math. Dept., 1968. MR 57:6215
  • [T1] J. Tits, Buildings of Special Type and Finite $BN$-pairs, Lecture Notes in Math. 386, Springer-Verlag, 1974. MR 57:9866
  • [T2] J. Tits, `Reductive groups over local fields.' In Automorphic Forms, Representations, and $L$-functions, Proc. of Symp. Pure Math. 33 Part I, 1979, pp. 29-69. MR 80h:20064
  • [To] P. Torasso, `Méthod des orbits de Kirillov-Duflo, orbites nilpotentes et représentations associées.' Preprint.
  • [W] A. Weil, `Sur certain group d'opérateurs unitaires.' Acta Math. 111 (1964), pp. 133-181. MR 29:2324

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (1991): 22E35, 22E50, 17B25, 17B60, 11F70, 11F27, 17C50

Retrieve articles in all journals with MSC (1991): 22E35, 22E50, 17B25, 17B60, 11F70, 11F27, 17C50


Additional Information

Karl E. Rumelhart
Affiliation: Department of Mathematics, Building 380, Stanford University, Stanford, California 94305-2125
Email: ker@math.stanford.edu

DOI: https://doi.org/10.1090/S1088-4165-97-00009-5
Received by editor(s): October 22, 1996
Received by editor(s) in revised form: April 3, 1997
Published electronically: June 19, 1997
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society