Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

The adjoint representation in rings of functions


Authors: Eric Sommers and Peter Trapa
Journal: Represent. Theory 1 (1997), 182-189
MSC (1991): Primary 22E46, 05E99
DOI: https://doi.org/10.1090/S1088-4165-97-00029-0
Published electronically: July 10, 1997
MathSciNet review: 1457243
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $G$ be a connected, simple Lie group of rank $n$ defined over the complex numbers. To a parabolic subgroup $P$ in $G$ of semisimple rank $r$, one can associate $n\!-\!r$ positive integers coming from the theory of hyperplane arrangements (see P. Orlik and L. Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980), 167-189; Coxeter arrangements, in Proc. of Symposia in Pure Math., Vol. 40 (1983) Part 2, 269-291). In the case $r\!=\!0$, these numbers are just the usual exponents of the Weyl group $W$ of $G$. These $n\!-\!r$ numbers are called coexponents.

Spaltenstein and Lehrer-Shoji have proven the observation of Spaltenstein that the degrees in which the reflection representation of $W$ occurs in a Springer representation associated to $P$ are exactly (twice) the coexponents (see N. Spaltenstein, On the reflection representation in Springer's theory, Comment. Math. Helv. 66 (1991), 618-636 and G. I. Lehrer and T. Shoji, On flag varieties, hyperplane complements and Springer representations of Weyl groups, J. Austral. Math. Soc. (Series A) 49 (1990), 449-485). On the other hand, Kostant has shown that the degrees in which the adjoint representation of $G$ occurs in the regular functions on the variety of regular nilpotents in $\ensuremath {\mathfrak g}:=Lie(G)$ are the usual exponents (see B. Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327-404). In this paper, we extend Kostant's result to Richardson orbits (or orbit covers) and we get a statement which is dual to Spaltenstein's. We will show that the degrees in which the adjoint representation of $G$ occurs in the regular functions on an orbit cover of a Richardson orbit associated to $P$ are also the coexponents.


References [Enhancements On Off] (What's this?)

  • [AL] D. Alvis and G. Lusztig, On Springer's correspondence for simple groups of type $E_n\ (n=6,7,8)$, Math. Proc. Cambridge Philos. Soc. 92 (1982), 65-78. MR 83k:20040
  • [BK] W. Borho and H. Kraft, Über Bahnen und deren Deformation bei linearen Aktionen reduktiver Gruppen, Comment. Math. Helv. 54 (1979), 61-104. MR 82m:14027
  • [Br] A. Broer, Normality of some nilpotent varieties and cohomology of line bundles on the cotangent bundle of the flag variety, In, Lie Theory and Geometry: In Honor of Bertram Kostant, Birkhäuser, Boston, 1994, 1-19. MR 96g:14042
  • [GR] H. Grauert and O. Riemenschneider, Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen, Invent. Math. 11 (1970), 263-292. MR 46:2081
  • [He1] W. H. Hesselink, Polarizations in the classical groups, Math. Z. 160 (1978), 217-234. MR 58:916
  • [He2] W. H. Hesselink, Characters of the nullcone, Math. Ann. 252 (1980), 179-182. MR 82c:17004
  • [Ko] B. Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327-404. MR 28:1252
  • [KP1] H. Kraft and C. Procesi, Closures of conjugacy classes of matrices are normal, Invent. Math. 53 (1979), 227-247. MR 80m:14037
  • [KP2] H. Kraft and C. Procesi, On the geometry of conjugacy classes in classical groups, Comment. Math. Helv. 57 (1982), 539-602. MR 85b:14065
  • [LeS] G. I. Lehrer and T. Shoji, On flag varieties, hyperplane complements and Springer representations of Weyl groups, J. Austral. Math. Soc. (Series A) 49 (1990), 449-485. MR 91k:20050
  • [Lu] G. Lusztig, Singularities, character formulas, and a $q$-analog of weight multiplicities, Analyse et topologie sur les espaces singuliers (II-III), Astérisque 101-102 (Societé Mathématique de France, Paris, 1983), 208-227. MR 85m:17005
  • [LuS] G. Lusztig and N. Spaltenstein, Induced unipotent classes, J. London Math. Soc. (2) 19 (1979), 41-52. MR 82g:20070
  • [M] W. M. McGovern, Rings of regular functions on nilpotent orbits and their covers, Invent. Math. 97 (1989), 209-217. MR 90g:22022
  • [OS1] P. Orlik and L. Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980), 167-189. MR 81e:32015
  • [OS2] P. Orlik and L. Solomon, Coxeter arrangements, in Proc. of Symposia in Pure Math., Vol. 40 (1983) Part 2, 269-291. MR 85b:32016
  • [So] E. Sommers, A family of affine Weyl group representations, submitted to Transformation Groups.
  • [Sp] N. Spaltenstein, On the reflection representation in Springer's theory, Comment. Math. Helv. 66 (1991), 618-636. MR 93a:20070

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (1991): 22E46, 05E99

Retrieve articles in all journals with MSC (1991): 22E46, 05E99


Additional Information

Eric Sommers
Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Email: esommers@math.mit.edu

Peter Trapa
Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Email: ptrapa@math.mit.edu

DOI: https://doi.org/10.1090/S1088-4165-97-00029-0
Received by editor(s): April 28, 1997
Received by editor(s) in revised form: May 31, 1997
Published electronically: July 10, 1997
Additional Notes: Supported in part by the National Science Foundation
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society