On certain small representations of indefinite orthogonal groups

Authors:
Chen-bo Zhu and Jing-Song Huang

Journal:
Represent. Theory **1** (1997), 190-206

MSC (1991):
Primary 22E45, 22E46

DOI:
https://doi.org/10.1090/S1088-4165-97-00031-9

Published electronically:
July 17, 1997

MathSciNet review:
1457244

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For any such that , we construct a representation of with even as the kernel of a commuting set of number of -invariant differential operators in the space of functions on an isotropic cone with a distinguished -homogeneity degree. By identifying with a certain representation constructed via the formalism of the theta correspondence, we show (except when ) that the space of -finite vectors of is the -module of an irreducible unitary representation of with Gelfand-Kirillov dimension . Our construction generalizes the work of Binegar and Zierau (*Unitarization of a singular representation of *, Commun. Math. Phys. **138** (1991), 245-258) for .

**[A]**J. Adams,*The theta correspondence over*, Preprint, Workshop at the University of Maryland (1994).**[BK]**R. Brylinski and B. Kostant,*Minimal representations, geometric quantization, and unitarity*, Proc. Natl. Acad. Sci. USA**91**(1994), 6026-6029. MR**95d:58059****[BZ]**B. Binegar and R. Zierau,*Unitarization of a singular representation of*, Commun. Math. Phys.**138**(1991), 245-258. MR**92h:22027****[CM]**D. Collingwood and W. McGovern,*Nilpotent orbits in semisimple Lie algebras*, Van Nostrand Reinhold, New York, 1993. MR**94j:17001****[H1]**R. Howe,*Remarks on classical invariant theory*, Trans. Amer. Math. Soc.**313**(1989), 539-570. MR**90h:22015a****[H2]**R. Howe,*Transcending classical invariant theory*, J. Amer. Math. Soc.**2**(1989), 535-552. MR**90k:22016****[H3]**R. Howe,*Dual pairs in physics: Harmonic oscillators, photons, electrons, and singletons*, Lectures in Appl. Math., Vol. 21, Amer. Math. Soc., Providence, R.I. (1985), 179-206. MR**86i:22036****[H4]**R. Howe,*-series and invariant theory*, Proc. Sympos. Pure Math., Vol. 33, Part 1, Automorphic forms, representations and L-functions (1979), 275-286. MR**81f:22034****[H5]**R. Howe,*A notion of rank for unitary representations of classical groups*, C.I.M.E. Summer School on Harmonic Analysis, Cortona 1980.**[HT]**R. Howe and E.-C. Tan,*Homogeneous functions on light cones: the infinitesimal structure of some degenerate principal series*, Bull. Amer. Math. Soc.**28**(1993), 1-74. MR**93j:22027****[K1]**B. Kostant,*The principle of triality and a distinguished representation of*, Differential geometric methods in theoretical physics. Bleuler, K., Werner, M. (eds.) Series C: Math. and Phys., Sci., Vol. 250. MR**90h:22016****[K2]**B. Kostant,*The Vanishing of Scalar Curvature and the Minimal Representation of*, Operator algebras, Unitary representations, Enveloping algebras and Invariant theory, Proceedings of the Colloque en l'Honneur de Jacques Dixmier, 1989. MR**92g:22031****[Ku]**S. Kudla,*Seesaw dual reductive pairs*, Progr. Math.**46**(1983), 244-268. MR**86b:22032****[KR1]**S. Kudla and S. Rallis,*Degenerate principal series and invariant distributions*, Israel J. Math.**69**(1990), 25-45. MR**91e:22016****[KR2]**S. Kudla and S. Rallis,*Ramified degenerate principal series representations for*, Israel J. Math**78**(1992), 209-256. MR**94a:22035****[KV]**M. Kashiwara and M. Vergne,*On the Segal-Shale-Weil representations and harmonic polynomials*, Invent. Math.**44**(1978), 1-47. MR**57:3311****[L1]**J. S. Li,*Singular unitary representations of classical groups*, Invent. Math.**97**(1989), 237-255. MR**90h:22021****[L2]**J. S. Li,*On the classification of irreducible low rank unitary representations of classical groups*, Compositio Mathematica**71**(1989), 29-48. MR**90k:22027****[LZ1]**S. T. Lee and C. B. Zhu,*Degenerate principal series and local theta correspondence*, Trans. Amer. Math. Soc. (to appear).**[LZ2]**S. T. Lee and C. B. Zhu,*Degenerate principal series and local theta correspondence II*, Israel Jour. Math. (to appear).**[M]**W. McGovern,*Rings of regular functions on nilpotent orbits II: Model algebras and orbits*, Commun. in Algebra**22**(1994), 765-772. MR**95b:22035****[S]**S. Sahi,*Explicit Hilbert spaces for certain unipotent representations*, Invent. Math.**110 (2)**(1992), 409-418. MR**93i:22016****[T]**T. Ton-That,*Lie group representations and harmonic polynomials of a matrix variable*, Trans. Amer. Math. Soc.**219**(1976), 1-46. MR**53:3210****[V]**D. Vogan,*Gelfand-Kirillov dimension for Harish-Chandra modules*, Invent. Math.**48**(1978), 75-98. MR**58:22205****[W]**H. Weyl,*The classical groups*, Princeton University Press, Princeton, New Jersey, 1939. MR**1:42c****[Z]**C. B. Zhu,*Invariant distributions of classical groups*, Duke Math. Jour.**65 (1)**(1992), 85-119. MR**92k:22022**

Retrieve articles in *Representation Theory of the American Mathematical Society*
with MSC (1991):
22E45,
22E46

Retrieve articles in all journals with MSC (1991): 22E45, 22E46

Additional Information

**Chen-bo Zhu**

Affiliation:
Department of Mathematics, National University of Singapore, Kent Ridge, Singapore 119260

Email:
matzhucb@leonis.nus.sg

**Jing-Song Huang**

Affiliation:
Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

Email:
mahuang@uxmail.ust.hk

DOI:
https://doi.org/10.1090/S1088-4165-97-00031-9

Keywords:
Orthogonal groups,
isotropic cones,
theta correspondence,
Howe quotient,
Gelfand-Kirillov dimension,
nilpotent orbits

Received by editor(s):
September 4, 1996

Received by editor(s) in revised form:
January 9, 1997

Published electronically:
July 17, 1997

Article copyright:
© Copyright 1997
American Mathematical Society