Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

Nilpotent orbits and theta-stable
parabolic subalgebras


Author: Alfred G. Noël
Journal: Represent. Theory 2 (1998), 1-32
MSC (1991): Primary 17B20, 17B70
DOI: https://doi.org/10.1090/S1088-4165-98-00038-7
Published electronically: February 3, 1998
MathSciNet review: 1600330
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this work, we present a new classification of nilpotent orbits in a real reductive Lie algebra ${\mathfrak{g}}$ under the action of its adjoint group. Our classification generalizes the Bala-Carter classification of the nilpotent orbits of complex semisimple Lie algebras. Our theory takes full advantage of the work of Kostant and Rallis on ${\mathfrak{p}}_{{}_{\mathbb{C}}}$, the ``complex symmetric space associated with ${\mathfrak{g}}$''. The Kostant-Sekiguchi correspondence, a bijection between nilpotent orbits in ${\mathfrak{g}}$ and nilpotent orbits in ${\mathfrak{p}}_{{}_{\mathbb{C}}}$, is also used. We identify a fundamental set of noticed nilpotents in ${\mathfrak{p}}_{{}_{\mathbb{C}}}$ and show that they allow us to recover all other nilpotents. Finally, we study the behaviour of a principal orbit, that is an orbit of maximal dimension, under our classification. This is not done in the other classification schemes currently available in the literature.


References [Enhancements On Off] (What's this?)

  • [B-C1] P. Bala and R. Carter, Classes of unipotent elements in simple algebraic groups. I, Math. Proc. Cambridge. Philos. Soc. 79 (1976), 401-425. MR 54:5363a
  • [B-C2] P. Bala and R. Carter, Classes of unipotent elements in simple algebraic groups. II, Math. Proc. Cambridge. Philos. Soc. 80 (1976), 1-17. MR 54:5363b
  • [Bo] A. Borel and J. Tits, Groupes réductifs, Inst. Hautes Etudes Sci. Publ. Math. 27 (1965), 55-150. MR 34:7527
  • [B-Cu] N. Burgoyne and R. Cushman, Conjugacy classes in the linear groups, J. Alg. 44 (1977), 339-362. MR 55:5761
  • [Br] W. C. Brown, A second course in linear algebra, John Wiley & Sons, Interscience, 1988. MR 89f:15001
  • [Ca] R. Carter, Finite groups of Lie type. Conjugacy classes and complex characters, John Wiley & Sons, London, 1985. MR 94k:20020
  • [C-Mc] D. H. Collingwood and W. M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reihnhold Mathematics Series, New York, 1993. MR 94j:17001
  • [D1] D. Djokovic, Classification of nilpotent elements in simple exceptional real Lie algebras of inner type and description of their centralizers, J. Alg. 112 (1988), 503-524. MR 89b:17010
  • [D2] D. Djokovic, Classification of nilpotent elements in the simple real Lie algebras $E_{6(6)}$ and $E_{6(-26)}$ and description of their centralizers, J. Alg. 116 (1988), 196-207. MR 89k:17022
  • [D3] D. Djokovic, Closures of conjugacy classes in classical real linear Lie groups, Algebra, Carbondale, Lecture Notes in Math. 848, Springer-Verlag, New York (1980), 63-83. MR 82h:20052
  • [Dy] E. Dynkin, Semisimple subalgebras of simple Lie algebras, Amer. Soc. Transl. Ser. 2 6, (1957), 111-245.
  • [He] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York, 1978. MR 80k:53081
  • [H1] J. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York, 1972. MR 81b:17007
  • [H2] J. Humphreys, Conjugacy classes in semisimple algebraic groups, Mathematical Surveys and Monographs, vol. 43, Amer. Math. Soc., Providence RI, 1995. MR 97i:20057
  • [Hu] T. W. Hungerford, Algebra, Graduate Texts in Mathematics, vol. 73, Springer-Verlag, New York, 1974. MR 82a:00006
  • [J-R] D. S. Johnston and R. W. Richardson, Conjugacy classes in parabolic subgroups of semisimple algebraic groups. II, Bull. London Math. Soc. 9 (1977), 245-250. MR 58:917
  • [Ka] N. Kawanaka, Orbits and stabilizers of nilpotent elements of a graded semisimple Lie algebra, J. Fac. Univ. Tokyo Sect. IA, Math 34 (1987), 573-597. MR 89j:17012
  • [Ki] D. R. King, The component groups of nilpotents in exceptional simple real Lie algebras, Comm. Algebra 20 (1) (1992), 219-284. MR 93c:17018
  • [Kn] A. W. Knapp, Lie groups beyond an introduction, vol. 140, Birkhäuser, Progress in Mathematics, Boston, 1996. CMP 96:15
  • [K-V] A. W. Knapp and D. A. Vogan, Cohomological induction and unitary representations, vol. 45, Princeton, New Jersey, 1995. MR 96c:22023
  • [Ko] B. Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973-1032. MR 22:5693
  • [K-R] B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753-809. MR 47:399
  • [No1] A. G. Noël, Classification of nilpotent orbits in symmetric spaces, Proceedings of the DIMACS workshop for African-American Researchers in the Mathematical Sciences, Amer. Math. Soc. 34 (1997).
  • [No2] A. G. Noël, Nilpotent orbits and $\theta $-stable parabolic subalgebras, Ph.D. Thesis, Northeastern University, Boston (March 1997).
  • [R] R. W. Richardson, Conjugacy classes in Lie algebras and algebraic groups, Ann. Math. 86 (1967), 1-15. MR 36:173
  • [R1] R. W. Richardson, On orbits of algebraic groups and Lie groups, Bull. Austral. Math. Soc. 25 (1982), 1-28. MR 83i:14041
  • [R2] R. W. Richardson, Finiteness theorems for orbits of algebraic groups, Indag. Math. 47 (1985), 337-344. MR 87e:14044
  • [Röh] G. Röhrle, On certain stabilizers in algebraic groups, Comm. Algebra 21 (5) (1993), 1631-1644. MR 94d:20052
  • [Rot] L. P. Rothschild, Orbits in a real reductive Lie algebra, Trans. Amer. Math. Soc. 168 (June 1972), 403-421. MR 50:2271
  • [S-K] M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1-155. MR 55:3341
  • [Se] J. Sekiguchi, Remarks on real nilpotent orbits of a symmetric pair, J. Math. Soc. Japan 39, No. 1 (1987), 127-138. MR 88g:53053
  • [S-S] T. A. Springer and R. Steinberg, Seminar on algebraic groups and related finite groups, Lecture Notes in Mathematics 131 (1970). MR 42:3091
  • [Ve] M. Vergne, Instantons et correspondence de Kostant-Sekiguchi, R. Acad. Sci. Paris Sér. I Math. 320 (1995), 901-906. MR 96c:22026
  • [Vi] E. B. Vinberg, On the classification of the nilpotent elements of graded Lie algebras, Soviet Math. Dokl. 16 (1975), 1517-1520.
  • [Vo] D. A. Vogan, Representation of real reductive Lie groups, vol. 15, Birkhäuser, Progress in Mathematics, Boston, 1981. MR 83c:22022

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (1991): 17B20, 17B70

Retrieve articles in all journals with MSC (1991): 17B20, 17B70


Additional Information

Alfred G. Noël
Affiliation: Department of Mathematics, Northeastern University, Boston, Massachusetts, 02115; Peritus Software Services Inc. 304 Concord Road, Billerica, Massachusetts 01821
Email: anoel@lynx.neu.edu, anoel@peritus.com

DOI: https://doi.org/10.1090/S1088-4165-98-00038-7
Keywords: Parabolic subalgebras, nilpotent orbits, reductive Lie algebras
Received by editor(s): August 11, 1997
Received by editor(s) in revised form: December 3, 1997
Published electronically: February 3, 1998
Additional Notes: The author thanks his advisor, Donald R. King, for his helpful suggestions.
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society