Intertwining operators into cohomology representations for semisimple Lie groups II
Author:
Robert W. Donley Jr.
Journal:
Represent. Theory 2 (1998), 278297
MSC (1991):
Primary 22E46
Published electronically:
June 16, 1998
MathSciNet review:
1628039
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: One approach to constructing unitary representations for semisimple Lie groups utilizes analytic cohomology on open orbits of generalized flag manifolds. This work gives explicit formulas for harmonic cocycles associated to certain holomorphic homogeneous vector bundles, extending previous results of the author (Intertwining operators into cohomology representations for semisimple Lie groups, J. Funct. Anal. 151 (1997), 138165). The key step shows that holomorphic discrete series representations and their limits are wellbehaved with respect to restriction to certain submanifolds.
 [AR]
R. AguilarRodriguez, Connections between representations of Lie groups and sheaf cohomology, Ph.D. dissertation, 1987.
 [Ba]
L.
Barchini, Szegő mappings, harmonic forms, and Dolbeault
cohomology, J. Funct. Anal. 118 (1993), no. 2,
351–406. MR 1250267
(94k:22033), http://dx.doi.org/10.1006/jfan.1993.1148
 [BKZ]
L.
Barchini, A.
W. Knapp, and R.
Zierau, Intertwining operators into Dolbeault cohomology
representations, J. Funct. Anal. 107 (1992),
no. 2, 302–341. MR 1172027
(93e:22026), http://dx.doi.org/10.1016/00221236(92)901105
 [BZ]
L. Barchini and R. Zierau, Square integrable harmonic forms and representation theory, Duke Math. J. (to appear).
 [BE]
Robert
J. Baston and Michael
G. Eastwood, The Penrose transform, Oxford Mathematical
Monographs, The Clarendon Press, Oxford University Press, New York, 1989.
Its interaction with representation theory; Oxford Science Publications. MR 1038279
(92j:32112)
 [Bo]
Raoul
Bott, Homogeneous vector bundles, Ann. of Math. (2)
66 (1957), 203–248. MR 0089473
(19,681d)
 [CM]
William
Casselman and Dragan
Miličić, Asymptotic behavior of matrix coefficients
of admissible representations, Duke Math. J. 49
(1982), no. 4, 869–930. MR 683007
(85a:22024), http://dx.doi.org/10.1215/S0012709482049432
 [Do]
R. W. Donley, Jr., Intertwining operators into cohomology representations for semisimple Lie groups, J. Funct. Anal. 151 (1997), 138165. CMP 98:06
 [EH]
Thomas
Enright, Roger
Howe, and Nolan
Wallach, A classification of unitary highest weight modules,
Representation theory of reductive groups (Park City, Utah, 1982) Progr.
Math., vol. 40, Birkhäuser Boston, Boston, MA, 1983,
pp. 97–143. MR 733809
(86c:22028)
 [GS]
Phillip
Griffiths and Wilfried
Schmid, Locally homogeneous complex manifolds, Acta Math.
123 (1969), 253–302. MR 0259958
(41 #4587)
 [HC1]
HarishChandra,
Representations of a semisimple Lie
group on a Banach space. I, Trans. Amer. Math.
Soc. 75 (1953),
185–243. MR 0056610
(15,100f), http://dx.doi.org/10.1090/S00029947195300566102
 [HC2]
HarishChandra,
Representations of semisimple Lie groups. V, Amer. J. Math.
78 (1956), 1–41. MR 0082055
(18,490c)
 [HC3]
HarishChandra,
Representations of semisimple Lie groups. VI. Integrable and
squareintegrable representations, Amer. J. Math. 78
(1956), 564–628. MR 0082056
(18,490d)
 [JV]
Hans
Plesner Jakobsen and Michèle
Vergne, Restrictions and expansions of holomorphic
representations, J. Funct. Anal. 34 (1979),
no. 1, 29–53. MR 551108
(80m:22020), http://dx.doi.org/10.1016/00221236(79)900235
 [K1]
A.
W. Knapp, Representations of 𝐺𝐿₂(𝑅)
and 𝐺𝐿₂(𝐶), Automorphic forms,
representations and 𝐿functions (Proc. Sympos. Pure Math., Oregon
State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII,
Amer. Math. Soc., Providence, R.I., 1979, pp. 87–91. MR 546590
(81a:22008)
 [K2]
Anthony
W. Knapp, Representation theory of semisimple groups,
Princeton Mathematical Series, vol. 36, Princeton University Press,
Princeton, NJ, 1986. An overview based on examples. MR 855239
(87j:22022)
 [K3]
Anthony
W. Knapp, Lie groups, Lie algebras, and cohomology,
Mathematical Notes, vol. 34, Princeton University Press, Princeton,
NJ, 1988. MR
938524 (89j:22034)
 [K4]
A. W. Knapp, Imbedding discrete series in , in ``Harmonic analysis on Lie groups (Sandjerg Estate, August 2630, 1991)," Copenhagen University Mathematics Institute, Report Series 1991, No. 3, pp. 2729, Copenhagen, 1991.
 [K5]
A.
W. Knapp, Introduction to representations in analytic
cohomology, The Penrose transform and analytic cohomology in
representation theory (South Hadley, MA, 1992) Contemp. Math.,
vol. 154, Amer. Math. Soc., Providence, RI, 1993, pp. 1–19.
MR
1246374 (94k:22031), http://dx.doi.org/10.1090/conm/154/01353
 [KO]
A.
W. Knapp and K.
Okamoto, Limits of holomorphic discrete series, J. Functional
Analysis 9 (1972), 375–409. MR 0299726
(45 #8774)
 [KV]
Anthony
W. Knapp and David
A. Vogan Jr., Cohomological induction and unitary
representations, Princeton Mathematical Series, vol. 45,
Princeton University Press, Princeton, NJ, 1995. MR 1330919
(96c:22023)
 [KW]
A.
W. Knapp and N.
R. Wallach, Correction and addition: “Szegő kernels
associated with discrete series” [Invent. Math. 34 (1976), no. 3,
163–200;\ MR 54 #7704], Invent. Math. 62
(1980/81), no. 2, 341–346. MR 595593
(82i:22016), http://dx.doi.org/10.1007/BF01389165
A.
W. Knapp and N.
R. Wallach, Szegö kernels associated with discrete
series, Invent. Math. 34 (1976), no. 3,
163–200. MR 0419686
(54 #7704)
 [KZ]
A.
W. Knapp and Gregg
J. Zuckerman, Correction: “Classification of irreducible
tempered representations of semisimple groups” [Ann. of Math. (2)
116\ (1982), no. 2, 389–501; MR 84h:22034ab], Ann. of Math. (2)
119 (1984), no. 3, 639. MR 744867
(85e:22023), http://dx.doi.org/10.2307/2007089
A.
W. Knapp and Gregg
J. Zuckerman, Classification of irreducible tempered
representations of semisimple groups. II, Ann. of Math. (2)
116 (1982), no. 3, 457–501. MR 678478
(84h:22034b), http://dx.doi.org/10.2307/2007019
A.
W. Knapp and Gregg
J. Zuckerman, Classification of irreducible tempered
representations of semisimple groups, Ann. of Math. (2)
116 (1982), no. 2, 389–455. MR 672840
(84h:22034a), http://dx.doi.org/10.2307/2007066
 [Ko]
Toshiyuki
Kobayashi, Discrete decomposability of the restriction of
𝐴_{𝔮}(𝜆) with respect to reductive subgroups and
its applications, Invent. Math. 117 (1994),
no. 2, 181–205. MR 1273263
(95b:22027), http://dx.doi.org/10.1007/BF01232239
 [Kd]
Kunihiko
Kodaira, Complex manifolds and deformation of complex
structures, Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences], vol. 283, SpringerVerlag, New
York, 1986. Translated from the Japanese by Kazuo Akao; With an appendix by
Daisuke Fujiwara. MR 815922
(87d:32040)
 [Ks]
Bertram
Kostant, Lie algebra cohomology and the generalized BorelWeil
theorem, Ann. of Math. (2) 74 (1961), 329–387.
MR
0142696 (26 #265)
 [La]
R.
P. Langlands, On the classification of irreducible representations
of real algebraic groups, Representation theory and harmonic analysis
on semisimple Lie groups, Math. Surveys Monogr., vol. 31, Amer. Math.
Soc., Providence, RI, 1989, pp. 101–170. MR 1011897
(91e:22017), http://dx.doi.org/10.1090/surv/031/03
 [Mi]
Hisaichi
Midorikawa, Schur orthogonality relations for certain non square
integrable representations of real semisimple Lie groups, Tokyo J.
Math. 8 (1985), no. 2, 303–336. MR 826991
(87g:22017), http://dx.doi.org/10.3836/tjm/1270151217
 [RSW]
John
Rawnsley, Wilfried
Schmid, and Joseph
A. Wolf, Singular unitary representations and indefinite harmonic
theory, J. Funct. Anal. 51 (1983), no. 1,
1–114. MR
699229 (84j:22022), http://dx.doi.org/10.1016/00221236(83)900290
 [S1]
Wilfried
Schmid, Homogeneous complex manifolds and representations of
semisimple Lie groups, Representation theory and harmonic analysis on
semisimple Lie groups, Math. Surveys Monogr., vol. 31, Amer. Math.
Soc., Providence, RI, 1989, pp. 223–286. Dissertation,
University of California, Berkeley, CA, 1967. MR 1011899
(90i:22025), http://dx.doi.org/10.1090/surv/031/05
 [S2]
Wilfried
Schmid, 𝐿²cohomology and the discrete series,
Ann. of Math. (2) 103 (1976), no. 2, 375–394.
MR
0396856 (53 #716)
 [S3]
Wilfried
Schmid, Boundary value problems for group invariant differential
equations, Astérisque Numero Hors Serie
(1985), 311–321. The mathematical heritage of Élie Cartan
(Lyon, 1984). MR
837206 (87h:22018)
 [TW]
Juan
A. Tirao and Joseph
A. Wolf, Homogeneous holomorphic vector bundles, Indiana Univ.
Math. J. 20 (1970/1971), 15–31. MR 0263110
(41 #7715)
 [Vo1]
David
A. Vogan Jr., The algebraic structure of the representation of
semisimple Lie groups. I, Ann. of Math. (2) 109
(1979), no. 1, 1–60. MR 519352
(81j:22020), http://dx.doi.org/10.2307/1971266
 [Vo2]
David
A. Vogan, Irreducible characters of semisimple Lie groups. III.
Proof of KazhdanLusztig conjecture in the integral case, Invent.
Math. 71 (1983), no. 2, 381–417. MR 689650
(84h:22036), http://dx.doi.org/10.1007/BF01389104
 [VW]
D.
A. Vogan Jr. and N.
R. Wallach, Intertwining operators for real reductive groups,
Adv. Math. 82 (1990), no. 2, 203–243. MR 1063958
(91h:22022), http://dx.doi.org/10.1016/00018708(90)900896
 [Wa]
Nolan
R. Wallach, Representations of reductive Lie groups,
Automorphic forms, representations and 𝐿functions (Proc. Sympos.
Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure
Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979,
pp. 71–86. MR 546589
(80m:22024)
 [Wo]
H. W. Wong, Cohomological induction in various categories and the maximal globalization conjecture, preprint, 1995.
 [Zi]
Roger
Zierau, Unitarity of certain Dolbeault cohomology
representations, The Penrose transform and analytic cohomology in
representation theory (South Hadley, MA, 1992) Contemp. Math.,
vol. 154, Amer. Math. Soc., Providence, RI, 1993,
pp. 239–259. MR 1246388
(94g:22029), http://dx.doi.org/10.1090/conm/154/01367
 [AR]
 R. AguilarRodriguez, Connections between representations of Lie groups and sheaf cohomology, Ph.D. dissertation, 1987.
 [Ba]
 L. Barchini, Szegö Mappings, harmonic forms, and Dolbeault cohomology, J. Funct. Anal. 118 (1993), 351406. MR 94k:22033
 [BKZ]
 L. Barchini, A. W. Knapp, and R. Zierau, Intertwining operators into Dolbeault cohomology representations, J. Funct. Anal. 107 (1992), 302341. MR 93e:22026
 [BZ]
 L. Barchini and R. Zierau, Square integrable harmonic forms and representation theory, Duke Math. J. (to appear).
 [BE]
 R. J. Baston and M. G. Eastwood, ``The Penrose transform: Its interaction with representation theory," Oxford University Press, New York, 1989. MR 92j:32112
 [Bo]
 R. Bott, Homogeneous vector bundles, Ann. of Math. 66 (1957), 203248. MR 19:681d
 [CM]
 W. Casselman and D. Milicic, Asymptotic behavior of matrix coefficients of admissible representations, Duke Math. J. 49 (1982), 869930. MR 85a:22024
 [Do]
 R. W. Donley, Jr., Intertwining operators into cohomology representations for semisimple Lie groups, J. Funct. Anal. 151 (1997), 138165. CMP 98:06
 [EH]
 T. J. Enright, R. Howe, and N. Wallach, A classification of unitary highest weight modules, in ``Representation theory of reductive groups," Birkhäuser, Boston, 1983, pp. 97143. MR 86c:22028
 [GS]
 P. Griffiths and W. Schmid, Locally homogeneous complex manifolds, Acta Math. 123 (1969), 253302. MR 41:4587
 [HC1]
 HarishChandra, Representations of semisimple Lie groups on a Banach space I, Trans. Amer. Math. Soc. 75 (1953), 185243. MR 15:100f
 [HC2]
 HarishChandra, Representations of semisimple Lie groups V, Amer. J. Math. 78 (1956), 141. MR 18:490c
 [HC3]
 HarishChandra, Representations of semisimple Lie groups VI, Amer. J. Math. 78 (1956), 564628. MR 18:490d
 [JV]
 H. P. Jakobsen and M. Vergne, Restrictions and expansions of holomorphic representations, J. Funct. Anal. 34 (1979), 2953. MR 80m:22020
 [K1]
 A. W. Knapp, Representations of and in ``Automorphic forms, representations and functions," Part 1, Proc. Symp. Pure Math. 33, pp. 8791, American Mathematical Society, Providence, 1979. MR 81a:22008
 [K2]
 A. W. Knapp, Representation theory of Lie groups. An overview based on examples, Princeton Univ. Press, Princeton, N.J., 1986. MR 87j:22022
 [K3]
 A. W. Knapp, Lie groups, Lie algebras and cohomology, Princeton Univ. Press, Princeton, N.J., 1988. MR 89j:22034
 [K4]
 A. W. Knapp, Imbedding discrete series in , in ``Harmonic analysis on Lie groups (Sandjerg Estate, August 2630, 1991)," Copenhagen University Mathematics Institute, Report Series 1991, No. 3, pp. 2729, Copenhagen, 1991.
 [K5]
 A. W. Knapp, Introduction to representations in analytic cohomology, Contemp. Math. 154 (1993), 119. MR 94k:22031
 [KO]
 A. W. Knapp and K. Okamoto, Limits of holomorphic discrete series, J. Funct. Anal. 9 (1972), 375409. MR 45:8774
 [KV]
 A. W. Knapp and D. A. Vogan, Cohomological induction and unitary representations, Princeton Univ. Press, Princeton, N.J., 1995. MR 96c:22023
 [KW]
 A. W. Knapp and N. R. Wallach, Szegö kernels associated with discrete series, Invent. Math. 34 (1976), 163200; 62, (1980), 341346. MR 82i:22016; MR 54:7704
 [KZ]
 A. W. Knapp and G. Zuckerman, Classification of irreducible tempered representations of semisimple groups, Ann. of Math. 116 (1982), 389501; 119, (1984), 639. MR 85e:22023; MR 84h:22034b; MR 84h:22034a
 [Ko]
 T. Kobayashi, Discrete decomposability of the restriction of with respect to reductive subgroups and its applications, Invent. Math. 117 (1994), 181205. MR 95b:22027
 [Kd]
 K. Kodaira, Complex manifolds and deformation of complex structures (Grundlehren der mathematischen Wissenschaften; 283), SpringerVerlag, New York, 1986. MR 87d:32040
 [Ks]
 B. Kostant, Lie algebra cohomology and the generalized BorelWeil theorem, Ann. of Math. 74 (1961), 329387. MR 26:265
 [La]
 R. P. Langlands, On the classification of irreducible representations of real algebraic groups, preprint, Institute for Advanced Study, Princeton (1973); reprinted in ``Representation theory and harmonic analysis on semisimple Lie groups," Math Surveys and Monographs 31, pp. 101170, American Mathematical Society, Providence, 1989. MR 91e:22017
 [Mi]
 H. Midorikawa, Schur orthogonality relations for certain nonsquare integrable representations of real semisimple Lie groups, Tokyo. J. Math. 8 (1985), 303336. MR 87g:22017
 [RSW]
 J. Rawnsley, W. Schmid, and J. A. Wolf, Singular unitary representations and indefinite harmonic theory, J. Funct. Anal. 51 (1983), 1114. MR 84j:22022
 [S1]
 W. Schmid, Homogeneous complex manifolds and representations of semisimple Lie groups, Ph.D. dissertation, University of California, Berkeley, 1967; reprinted in ``Representation theory and harmonic analysis on semisimple Lie groups," Math Surveys and Monographs 31, pp. 223286, American Mathematical Society, Providence, 1989. MR 90i:22025
 [S2]
 W. Schmid, Cohomology and the discrete series, Ann. of Math. 103 (1976), 375394. MR 53:716
 [S3]
 W. Schmid, Boundary value problems for group invariant differential equations, in ``Elie Cartan et les mathématiques d'aujourd'hui (Lyon, 2529 juin 1984)," Astérisque, Numero hors série, 1985, pp. 311321. MR 87h:22018
 [TW]
 J. A. Tirao and J. A. Wolf, Homogeneous holomorphic vector bundles, Indiana U. Math. J. 20 (1970), 1531. MR 41:7715
 [Vo1]
 D. A. Vogan, The algebraic structure of the representation of semisimple Lie groups I, Ann. of Math. 109 (1979), 160. MR 81j:22020
 [Vo2]
 D. A. Vogan, Irreducible characters of semisimple Lie groups III, Invent. Math. 71 (1983), 381417. MR 84h:22036
 [VW]
 D. A. Vogan and N. R. Wallach, Intertwining operators for real reductive groups, Adv. in Math. 82 (1990), 203243. MR 91h:22022
 [Wa]
 N. Wallach, Representations of reductive Lie algebras, in ``Automorphic forms, representations and functions," Part 1, Proc. Symp. Pure Math. 33, pp. 7186, American Mathematical Society, Providence, 1979. MR 80m:22024
 [Wo]
 H. W. Wong, Cohomological induction in various categories and the maximal globalization conjecture, preprint, 1995.
 [Zi]
 R. Zierau, Unitarity of certain Dolbeault cohomology representations, in ``The Penrose transform and analytic cohomology in representation theory," Contemp. Math. 154, pp. 239259, American Mathematical Society, Providence, 1993. MR 94g:22029
Similar Articles
Retrieve articles in Representation Theory of the American Mathematical Society
with MSC (1991):
22E46
Retrieve articles in all journals
with MSC (1991):
22E46
Additional Information
Robert W. Donley Jr.
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Address at time of publication:
Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078
Email:
donley@math.mit.edu
DOI:
http://dx.doi.org/10.1090/S1088416598000442
PII:
S 10884165(98)000442
Received by editor(s):
February 5, 1998
Received by editor(s) in revised form:
March 31, 1998, and May 13, 1998
Published electronically:
June 16, 1998
Additional Notes:
Supported by NSF Grant DMS 9627447.
Article copyright:
© Copyright 1998
American Mathematical Society
