Representation Theory

ISSN 1088-4165

 

 

A generalization of Springer theory
using nearby cycles


Author: Mikhail Grinberg
Journal: Represent. Theory 2 (1998), 410-431
MSC (1991): Primary 14D05, 22E46
Published electronically: December 4, 1998
MathSciNet review: 1657203
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\mathfrak g$ be a complex semisimple Lie algebra, and $f : {\mathfrak{g}} \to G \backslash\!\backslash {\mathfrak{g}}$ the adjoint quotient map. Springer theory of Weyl group representations can be seen as the study of the singularities of $f$.

In this paper, we give a generalization of Springer theory to visible, polar representations. It is a class of rational representations of reductive groups over $\mathbb C$, for which the invariant theory works by analogy with the adjoint representations. Let $G \, | \, V$ be such a representation, $f : V \to G \backslash\!\backslash V$ the quotient map, and $P$ the sheaf of nearby cycles of $f$. We show that the Fourier transform of $P$ is an intersection homology sheaf on $V^*$.

Associated to $G \, | \, V$, there is a finite complex reflection group $W$, called the Weyl group of $G \, | \, V$. We describe the endomorphism ring ${\mathrm{End}} (P)$ as a deformation of the group algebra ${\mathbb{C}} [W]$.


References [Enhancements On Off] (What's this?)

  • [BB] A. Beĭlinson and J. Bernstein, A proof of Jantzen conjectures, I. M. Gel′fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 1–50. MR 1237825
  • [BBD] A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
  • [BG] T. Braden and M. Grinberg, Perverse sheaves on rank stratifications, to appear in the Duke J. Math.
  • [BM1] Walter Borho and Robert MacPherson, Représentations des groupes de Weyl et homologie d’intersection pour les variétés nilpotentes, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 15, 707–710 (French, with English summary). MR 618892
  • [BM2] Walter Borho and Robert MacPherson, Partial resolutions of nilpotent varieties, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 23–74. MR 737927
  • [Br] Jean-Luc Brylinski, Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques, Astérisque 140-141 (1986), 3–134, 251 (French, with English summary). Géométrie et analyse microlocales. MR 864073
  • [DK] Jiri Dadok and Victor Kac, Polar representations, J. Algebra 92 (1985), no. 2, 504–524. MR 778464, 10.1016/0021-8693(85)90136-X
  • [Gi] V. Ginzburg, Intégrales sur les orbites nilpotentes et représentations des groupes de Weyl, C.R. Acad. Sci. Paris 296 (1983), Sèrie I, pp. 249-253.
  • [Gr1] M. Grinberg, On the Specialization to the Asymptotic Cone, preprint, math.AG/9805031.
  • [Gr2] M. Grinberg, Morse groups in symmetric spaces corresponding to the symmetric group, preprint, math.AG/9802091.
  • [GM1] Mark Goresky and Robert MacPherson, Intersection homology. II, Invent. Math. 72 (1983), no. 1, 77–129. MR 696691, 10.1007/BF01389130
  • [GM2] Mark Goresky and Robert MacPherson, Morse theory and intersection homology theory, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 135–192. MR 737930
  • [GM3] Mark Goresky and Robert MacPherson, Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988. MR 932724
  • [Hi] Heisuke Hironaka, Stratification and flatness, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 199–265. MR 0499286
  • [HK] R. Hotta and M. Kashiwara, The invariant holonomic system on a semisimple Lie algebra, Invent. Math. 75 (1984), no. 2, 327–358. MR 732550, 10.1007/BF01388568
  • [Ho] Ryoshi Hotta, On Springer’s representations, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 863–876 (1982). MR 656061
  • [K] V. G. Kac, Some remarks on nilpotent orbits, J. Algebra 64 (1980), no. 1, 190–213. MR 575790, 10.1016/0021-8693(80)90141-6
  • [KL] David Kazhdan and George Lusztig, A topological approach to Springer’s representations, Adv. in Math. 38 (1980), no. 2, 222–228. MR 597198, 10.1016/0001-8708(80)90005-5
  • [KN] George Kempf and Linda Ness, The length of vectors in representation spaces, Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978), Lecture Notes in Math., vol. 732, Springer, Berlin, 1979, pp. 233–243. MR 555701
  • [KR] B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753–809. MR 0311837
  • [KS] Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1994. With a chapter in French by Christian Houzel; Corrected reprint of the 1990 original. MR 1299726
    Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1990. With a chapter in French by Christian Houzel. MR 1074006
  • [Lê1] Lê D ung Tráng, Some remarks on relative monodromy, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 397–403. MR 0476739
  • [Lê2] Lê D ung Tráng, The geometry of the monodromy theorem, C. P. Ramanujam—a tribute, Tata Inst. Fund. Res. Studies in Math., vol. 8, Springer, Berlin-New York, 1978, pp. 157–173. MR 541020
  • [Lu1] G. Lusztig, Green polynomials and singularities of unipotent classes, Adv. in Math. 42 (1981), no. 2, 169–178. MR 641425, 10.1016/0001-8708(81)90038-4
  • [Lu2] G. Lusztig, Left cells in Weyl groups, Lie group representations, I (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1024, Springer, Berlin, 1983, pp. 99–111. MR 727851, 10.1007/BFb0071433
  • [M] Robert MacPherson, Global questions in the topology of singular spaces, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 213–235. MR 804683
  • [Mi] John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. MR 0239612
  • [OV] È. B. Vinberg (ed.), Lie groups and Lie algebras, III, Encyclopaedia of Mathematical Sciences, vol. 41, Springer-Verlag, Berlin, 1994. Structure of Lie groups and Lie algebras; A translation of Current problems in mathematics. Fundamental directions. Vol. 41 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1990 [ MR1056485 (91b:22001)]; Translation by V. Minachin [V. V. Minakhin]; Translation edited by A. L. Onishchik and È. B. Vinberg. MR 1349140
  • [S1] T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173–207. MR 0442103
  • [S2] T. A. Springer, A construction of representations of Weyl groups, Invent. Math. 44 (1978), no. 3, 279–293. MR 0491988
  • [S3] T. A. Springer, Quelques applications de la cohomologie d’intersection, Bourbaki Seminar, Vol. 1981/1982, Astérisque, vol. 92, Soc. Math. France, Paris, 1982, pp. 249–273 (French). MR 689533
  • [Sl] Peter Slodowy, Simple singularities and simple algebraic groups, Lecture Notes in Mathematics, vol. 815, Springer, Berlin, 1980. MR 584445
  • [ST] G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canadian J. Math. 6 (1954), 274–304. MR 0059914

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (1991): 14D05, 22E46

Retrieve articles in all journals with MSC (1991): 14D05, 22E46


Additional Information

Mikhail Grinberg
Affiliation: Department of Mathematics, Massachusetts Institute of Technology, 77 Massachu- setts Ave., Room 2-247, Cambridge, Massachusetts 02139
Email: grinberg@math.mit.edu

DOI: http://dx.doi.org/10.1090/S1088-4165-98-00053-3
Received by editor(s): May 21, 1998
Received by editor(s) in revised form: October 10, 1998
Published electronically: December 4, 1998
Article copyright: © Copyright 1998 American Mathematical Society