Koszul duality for parabolic

and singular category

Author:
Erik Backelin

Journal:
Represent. Theory **3** (1999), 139-152

MSC (1991):
Primary 17B10, 18G15, 17B20

Published electronically:
July 19, 1999

MathSciNet review:
1703324

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper deals with a generalization of the ``Koszul duality theorem'' for the Bernstein-Gelfand-Gelfand category over a complex semi-simple Lie-algebra, established by Beilinson, Ginzburg and Soergel in *Koszul duality patterns in representation theory*, J. Amer. Math. Soc. 9 (1996), 473-527. In that paper it was proved that any ``block'' in , determined by an integral, but possibly singular weight, is Koszul (i.e. equivalent to the category of finitely generated modules over some Koszul ring) and, moreover, that the ``Koszul dual'' of such a block is isomorphic to a ``parabolic subcategory'' of the trivial block in .

We extend these results to prove that a parabolic subcategory of an integral and (possibly) singular block in is Koszul and we also calculate the Koszul dual of such a category.

**[AJS]**H. H. Andersen, J. C. Jantzen, and W. Soergel,*Representations of quantum groups at a 𝑝th root of unity and of semisimple groups in characteristic 𝑝: independence of 𝑝*, Astérisque**220**(1994), 321 (English, with English and French summaries). MR**1272539****[BG]**J. N. Bernstein and S. I. Gel′fand,*Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras*, Compositio Math.**41**(1980), no. 2, 245–285. MR**581584****[BGG1]**J. Bernstein, I.M. Gelfand and S.I. Gelfand,*Category of -modules*, Functional Anal. Appl. 10 (1976), 87-92.**[BGG2]**J. Bernstein, I.M. Gelfand and S.I. Gelfand,*Schubert cells and cohomology of spaces*, Russian Math. Survey 28 (1973), no. 3, 87-92.**[BGS]**Alexander Beilinson, Victor Ginzburg, and Wolfgang Soergel,*Koszul duality patterns in representation theory*, J. Amer. Math. Soc.**9**(1996), no. 2, 473–527. MR**1322847**, 10.1090/S0894-0347-96-00192-0**[CPS]**Edward Cline, Brian Parshall, and Leonard Scott,*Abstract Kazhdan-Lusztig theories*, Tohoku Math. J. (2)**45**(1993), no. 4, 511–534. MR**1245719**, 10.2748/tmj/1178225846**[Jan]**Jens Carsten Jantzen,*Einhüllende Algebren halbeinfacher Lie-Algebren*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 3, Springer-Verlag, Berlin, 1983 (German). MR**721170****[KL1]**D. Kazhdan and G. Lusztig,*Tensor structures arising from affine Lie algebras. I, II*, J. Amer. Math. Soc.**6**(1993), no. 4, 905–947, 949–1011. MR**1186962**, 10.1090/S0894-0347-1993-1186962-0**[KL2]**D. Kazhdan and G. Lusztig,*Tensor structures arising from affine Lie algebras. III*, J. Amer. Math. Soc.**7**(1994), no. 2, 335–381. MR**1239506**, 10.1090/S0894-0347-1994-1239506-X

D. Kazhdan and G. Lusztig,*Tensor structures arising from affine Lie algebras. IV*, J. Amer. Math. Soc.**7**(1994), no. 2, 383–453. MR**1239507**, 10.1090/S0894-0347-1994-1239507-1**[Soe1]**Wolfgang Soergel,*Kategorie 𝒪, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe*, J. Amer. Math. Soc.**3**(1990), no. 2, 421–445 (German, with English summary). MR**1029692**, 10.1090/S0894-0347-1990-1029692-5**[Soe2]**W. Soergel,*𝔫-cohomology of simple highest weight modules on walls and purity*, Invent. Math.**98**(1989), no. 3, 565–580. MR**1022307**, 10.1007/BF01393837

Retrieve articles in *Representation Theory of the American Mathematical Society*
with MSC (1991):
17B10,
18G15,
17B20

Retrieve articles in all journals with MSC (1991): 17B10, 18G15, 17B20

Additional Information

**Erik Backelin**

Affiliation:
Department of Mathematics, Albert-Ludwigs-Universitat, Eckerstr. 1, D-79104 Freiburg im Briesgau, Germany

Email:
erik@toto.mathematik.uni-freiburg.de

DOI:
https://doi.org/10.1090/S1088-4165-99-00055-2

Received by editor(s):
August 24, 1998

Received by editor(s) in revised form:
January 31, 1999

Published electronically:
July 19, 1999

Article copyright:
© Copyright 1999
American Mathematical Society