Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

The fine structure of translation functors


Author: Karen Günzl
Journal: Represent. Theory 3 (1999), 223-249
MSC (1991): Primary 17B10
DOI: https://doi.org/10.1090/S1088-4165-99-00056-4
Published electronically: August 16, 1999
MathSciNet review: 1714626
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $E$ be a simple finite-dimensional representation of a semisimple Lie algebra with extremal weight $\nu$ and let $0 \neq e \in E_{\nu}$. Let $M(\tau)$ be the Verma module with highest weight $\tau$ and $0 \neq v_{\tau} \in M(\tau)_{\tau}$. We investigate the projection of $e \otimes v_{\tau} \in E \otimes M(\tau)$ on the central character $\chi(\tau+\nu)$. This is a rational function in $\tau$ and we calculate its poles and zeros. We then apply this result in order to compare translation functors.


References [Enhancements On Off] (What's this?)

  • [AJS] Andersen, H.H., Jantzen, J.-C., Soergel, W.: Representations of quantum groups at a $p$th root of unity and of semisimple groups in characteristic $p$: Independence of $p$. Astérisque 220 (1994), 1-320. MR 95j:20036
  • [Be] Bernstein, J.N.: Trace in Categories. In Operator Algebras, Unitary Representations, Enveloping Algebras and Invariant Theory (A. Connes, M. Duflo, A. Joseph, R. Rentschler, editors), Actes du colloque en l'honneur de Jacques Dixmier, Progress in Mathematics 92 Birkhäuser, 1990, 417-423. MR 92d:17010
  • [BG] Bernstein, J.N., Gelfand, S.I: Tensor products of finite and infinite dimensional representations of semisimple Lie algebras. Compositio Math. 41 (1980), 245-285. MR 82c:17003
  • [BGG1] Bernstein, J.N., Gelfand, I.M., Gelfand, S.I.: Structure of representations generated by vectors of highest weight. Funct. Anal. App. 5 (1971), 1-8. MR 45:298
  • [BGG2] -, Category of $\mbox{$\mathfrak g$}$-modules. Funct. Anal. App. 10 (1976), 87-92.
  • [Di] Dixmier, J.: Enveloping Algebras. (North Holland Mathematical Library, Vol. 14) Amsterdam-New York-Oxford: North Holland, 1977. MR 58:16803b
  • [ES] Etingof, P., Styrkas, K.: Algebraic integrability of Schrödinger operators and representations of Lie algebras. Compositio Math. 98 (1995), 91-112. MR 96j:58076
  • [EV] Etingof, P., Varchenko, A.: Exchange Dynamical Quantum Groups. On the xxx-preprint server under math.QA/9801135.
  • [HS] Hilton, J.P., Stammbach, U.: A course in homological algebra. New York-Heidelberg-Berlin: Springer, 1971. MR 49:10751
  • [Ja1] Jantzen, J.C.: Moduln mit einem höchsten Gewicht. (Lecture Notes in Mathematics, Vol. 750) Berlin-Heidelberg-New York: Springer 1979. MR 81m:17011
  • [Ja2] -, Einhüllende Algebren halbeinfacher Lie-Algebren. Berlin-Heidelberg-New York-Tokyo: Springer 1983. MR 86c:17011
  • [Ka] Kashiwara, M.: The Universal Verma Module and the $b$-Function. In R. Hotta, editor, Algebraic Groups and Related Topics, Proceedings of Symposia Kyoto 1983, Nagoya, 1983, Adv. Stud. in Pure Mathematics 6, Kinokuniya Tokyo and North-Holland, Amsterdam, 1985, 67-81. MR 87i:22047
  • [Ko] Kostant, B.: On the Tensor Product of a Finite and an Infinite Dimensional Representation. Journal of Functional Analysis, 20 (1975), 257-285. MR 54:2888
  • [So] Soergel, W.: Kategorie $\mathcal O$, Perverse Garben und Moduln über den Koinvarianten zur Weylgruppe. Journal of the American Mathematical Society, Vol. 3, No. 2. April, 1990. MR 91e:17007

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (1991): 17B10

Retrieve articles in all journals with MSC (1991): 17B10


Additional Information

Karen Günzl
Affiliation: Universität Freiburg Mathematisches Institut Eckerstr.1 D-79104 Freiburg Germany
Email: karen@mathematik.uni-freiburg.de

DOI: https://doi.org/10.1090/S1088-4165-99-00056-4
Received by editor(s): September 2, 1998
Received by editor(s) in revised form: July 19, 1999
Published electronically: August 16, 1999
Additional Notes: Partially supported by EEC TMR-Network ERB FMRX-CT97-0100
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society