Symmetric polynomials and

Author:
Naihuan Jing

Journal:
Represent. Theory **4** (2000), 46-63

MSC (2000):
Primary 17B; Secondary 5E

DOI:
https://doi.org/10.1090/S1088-4165-00-00065-0

Published electronically:
February 7, 2000

MathSciNet review:
1740180

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

We study the explicit formula of Lusztig's integral forms of the level one quantum affine algebra in the endomorphism ring of symmetric functions in infinitely many variables tensored with the group algebra of . Schur functions are realized as certain orthonormal basis vectors in the vertex representation associated to the standard Heisenberg algebra. In this picture the Littlewood-Richardson rule is expressed by integral formulas, and is used to define the action of Lusztig's -form of on Schur polynomials. As a result the -lattice of Schur functions tensored with the group algebra contains Lusztig's integral lattice.

**[BCP]**J. Beck, V. Chari and A. Pressley, An algebraic characterization of the affine canonical basis, Duke Math. J.**99**(1999), 455-487. CMP**2000:01****[BFJ]**J. Beck, I. B. Frenkel and N. Jing, Canonical basis and Macdonald polynomials, Adv. in Math.**140**(1998), 95-127. CMP**99:05****[CJ]**V. Chari and N. Jing, Realization of level one representations of at a root of unity, math.QA/9909118.**[CT]**C. Carré and J.-Y. Thibon, Plethysm and vertex operators, Adv. in Appl. Math.**13**(1992), 390-403. MR**94c:05070****[CP]**V. Chari and A. Pressley, Quantum affine algebras at roots of unity, Representation Theory**1**(1997), 280-328. MR**98e:17018****[DJKM]**E. Date, M. Jimbo, M. Kashiwara and T. Miwa, Transformation groups for soliton equations. Nonlinear integrable systems--classical theory and quantum theory (Kyoto, 1981), pp. 39-119, World Sci. Publishing, Singapore, 1983. MR**86a:58093****[F1]**I. B. Frenkel, Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory, J. Funct. Anal.**44**(1981), 259-327. MR**83b:17012****[F2]**I. B. Frenkel, Lectures at Yale University, 1986.**[FJ]**I. B. Frenkel and N. Jing, Vertex representations of quantum affine algebras, Proc. Natl. Acad. Sci. USA**85**(1988), 9373-9377. MR**90e:17028****[G]**H. Garland, The arithmetic theory of loop algebras, J. Algebra**53**(1978), 480-551; Erratum: The arithmetic theory of loop algebras, J. Algebra**63**(1980), 285. MR**80a:17012**; MR**81d:17008****[Ga]**A. M. Garsia, Orthogonality of Milne's polynomials and raising operators, Discrete Math.**99**(1992), 247-264. MR**93m:05201****[H]**T. Hayashi, Q-analogues of Clifford and Weyl algebras-spinor and oscillator representations of quantum enveloping algebras, Commun. Math. Phys.**127**(1990), 129-144. MR**91a:17015****[JK]**G. James and A. Kerber,*The representation theory of the symmetric group*, Encyclopedia of Math. and its Appl.**16**, Addison-Wesley, Reading, MA, 1981. MR**83k:20003****[J1]**N. Jing, Vertex operators, symmetric functions and the spin groups , J. Algebra**138**(1991), 340-398. MR**92e:17033****[J2]**N. Jing, Vertex operators and Hall-Littlewood functions, Adv. in Math.**87**(1991), 226-248. MR**93c:17039****[J3]**N. Jing, Vertex operators and generalized symmetric functions, in: Proc. of Conf. on Quantum Topology (KSU, March 1993), ed. D. Yetter, World Scientific, Singapore, 1994, pp. 111-126. MR**96e:17062****[J4]**N. Jing, Boson-fermion correspondence for Hall-Littlewood polynomials, J. Math. Phys.**36**(1995), 7073-7080. MR**96m:17049****[J5]**N. Jing, Quantum Kac-Moody algebras and vertex representations, Lett. Math. Phys.**44**(1998), no. 4, 261-271. MR**99j:17043****[K]**M. Kashiwara, Global crystal bases of quantum groups, Duke Math. J.**73**(1993), 383-413.**[Ka]**V. G. Kac,*Infinite dimensional Lie algebras*, 3rd. ed., Cambridge Univ. Press, Cambridge, 1990. MR**92k:17038****[LLT]**A. Lascoux, B. Leclerc, J.-Y. Thibon, Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras and unipotent varieties, Sém. Lothar. Combin.**34**(1995), 23 pp. MR**98m:05195****[LP]**J. Lepowsky and P. Primc, Structure of the standard modules for affine Lie algebra , Contemp. Math.**46**, Amer. Math. Soc., Providence, RI, 1985. MR**87g:17021****[L]**G. Lusztig,*Introduction to quantum groups*, Progress in Mathematics**110**, Birkhäuser, Boston, 1993. MR**94m:17016****[M]**I. G. Macdonald,*Symmetric functions and Hall polynomials*, 2nd ed., Oxford University Press, New York, 1995. MR**96h:05207****[MM]**K. C. Misra and T. Miwa, Crystal bases for the basic representations of , Commun. Math. Phys.**134**(1990), 79-88. MR**91j:17021****[Z]**A. Zelevinsky,*Representations of finite classical groups, A Hopf algebra approach.*Lecture Notes in Mathematics, 869, Springer-Verlag, Berlin-New York, 1981. MR**83k:20017**

Retrieve articles in *Representation Theory of the American Mathematical Society*
with MSC (2000):
17B,
5E

Retrieve articles in all journals with MSC (2000): 17B, 5E

Additional Information

**Naihuan Jing**

Affiliation:
Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8205

Email:
jing@math.ncsu.edu

DOI:
https://doi.org/10.1090/S1088-4165-00-00065-0

Keywords:
Symmetric functions,
vertex operators,
quantum affine algebras,
Littlewood-Richardson rule

Received by editor(s):
February 17, 1999

Received by editor(s) in revised form:
December 10, 1999

Published electronically:
February 7, 2000

Additional Notes:
Research supported in part by NSA grant MDA904-97-1-0062 and Mathematical Sciences Research Institute.

Article copyright:
© Copyright 2000
American Mathematical Society