Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

On Minuscule Representations and the Principal SL$_2$


Author: Benedict H. Gross
Journal: Represent. Theory 4 (2000), 225-244
MSC (2000): Primary 20G05
DOI: https://doi.org/10.1090/S1088-4165-00-00106-0
Published electronically: July 27, 2000
MathSciNet review: 1795753
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the restriction of minuscule representations to the principal $SL_2$, and use this theory to identify an interesting test case for the Langlands philosophy of liftings.


References [Enhancements On Off] (What's this?)

  • [A] Jim Arthur, Unipotent automorphic representations: conjectures. In: Astérisque 171-172 (1989), 13-71. MR 91f:22030
  • [B] N. Bourbaki, Groupes et algèbres de Lie. Hermann, Paris, 1982.
  • [D] Pierre Deligne, Variétes de Shimura: Interpretation modulaire. In: Proc. Symp. Pure Math 33 (1979), part 2, 247-290. MR 81i:10032
  • [dS] J. de Siebenthal, Sur certains sous-groupes de rang un des groupes de Lie clos. Comptes Rendus 230 (1950), 910-912. MR 11:499b
  • [D-K] J. Dadok and V.G. Kac, Polar representations. J. Algebra 92 (1985) 504-524. MR 86e:14023
  • [G-W] Roe Goodman and Nolan Wallach, Representations and invariants of the classical groups. Cambridge University Press, Cambridge, 1998. MR 99b:20073
  • [G] Benedict Gross, On the motive of $G$ and the principal homomorphism SL $_2\rightarrow\hat G$. Asian J. Math. 1 (1997), 208-213. MR 99d:20077
  • [G-S] Benedict Gross and Gordan Savin, Motives with Galois group of type $G_2$: An exceptional theta correspondence, Compositio Math. 114 (1998), 153-217. MR 2000:11071
  • [H] Jim Humphreys, Reflection groups and Coxeter groups. Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, 1990. MR 92h:20002
  • [K] V.G. Kac, Some remarks on nilpotent orbits. J. Algebra 64 (1980), 190-213. MR 81i:17005
  • [S-K] M. Sato and T. Kimura, A classification of irreducible prehomogeneous spaces and their relative invariants. Nagoya Math. J. 65 (1977), 1-155. MR 55:3341
  • [V-Z] David Vogan and Gregg Zuckerman, Unitary representations with non-zero cohomology. Compositio Math. 53 (1984), 51-90. MR 86k:22040

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 20G05

Retrieve articles in all journals with MSC (2000): 20G05


Additional Information

Benedict H. Gross
Affiliation: Science Center 325, Harvard University, One Oxford Street, Cambridge, MA 02138
Email: gross@math.harvard.edu

DOI: https://doi.org/10.1090/S1088-4165-00-00106-0
Received by editor(s): May 9, 2000
Received by editor(s) in revised form: June 13, 2000
Published electronically: July 27, 2000
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society