ON MINUSCULE REPRESENTATIONS AND THE PRINCIPAL SL_2

BENEDICT H. GROSS

Abstract. We study the restriction of minuscule representations to the principal SL_2, and use this theory to identify an interesting test case for the Langlands philosophy of liftings.

In this paper, we review the theory of minuscule co-weights λ for a simple adjoint group G over \mathbb{C}, as presented by Deligne [D]. We then decompose the associated irreducible representation V_λ of the dual group \hat{G}, when restricted to a principal SL_2. This decomposition is given by the action of a Lefschetz SL_2 on the cohomology of the flag variety $X = G/P$, where P is the maximal parabolic subgroup of G associated to the co-weight λ. We reinterpret a result of Vogan and Zuckerman [V-Z, Prop 6.19] to show that the cohomology of X is mirrored by the bigraded cohomology of the L-packet of discrete series with infinitesimal character ρ, for a real form G_0 of G with a Hermitian symmetric space.

We then focus our attention on those minuscule representations with a non-zero linear form $t : V \to \mathbb{C}$ fixed by the principal SL_2, such that the subgroup $\hat{H} \subset \hat{G}$ fixing t acts irreducibly on the subspace $V_0 = \ker(t)$. We classify them in §10; since \hat{H} turns out to be reductive, we have a decomposition

$$ V = C e + V_0 $$

where e is fixed by \hat{H}, and satisfies $t(e) \neq 0$. We study V as a representation of \hat{H}, and give an \hat{H}-algebra structure on V with identity e.

The rest of the paper studies representations π of G which are lifted from H, in the sense of Langlands. We show this lifting is detected by linear forms on π which are fixed by a certain subgroup L of G. The subgroup L descends to a subgroup $L_0 \to G_0$ over \mathbb{R}; both have Hermitian symmetric spaces \mathcal{D} with $\dim_{\mathbb{C}}(\mathcal{D}_L) = \frac{1}{2} \dim_{\mathbb{C}}(\mathcal{D}_G)$. We hope this will provide cycle classes in the Shimura varieties associated to G_0, which will enable one to detect automorphic forms in cohomology which are lifted from H.

It is a pleasure to thank Robert Kottwitz, Mark Reeder, Gordon Savin, and David Vogan for their help.

Table of Contents

1. Minuscule co-weights
2. The real form G_0
3. The Weyl group

Received by the editors May 9, 2000 and, in revised form, June 13, 2000.
2000 Mathematics Subject Classification. Primary 20G05.
4. The flag variety
5. The representation V of the dual group \hat{G}
6. The principal $SL_2 \to \hat{G}$
7. Examples
8. Discrete series and a mirror theorem
9. Discrete series for $SO(2,2n)$
10. A classification theorem: $V = C e + V_0$
11. The representation V of H
12. Representations of G lifted from H
13. The proof of Proposition 12.4
14. The real form of L \to \hat{G}$
15. The group G in a Levi factor

1. Minuscule co-weights

Let G be a simple algebraic group over \mathbb{C}, of adjoint type. Let $T \subset B \subset G$ be a maximal torus contained in a Borel subgroup, and let Δ be the corresponding set of simple roots for T. Then Δ gives a \mathbb{Z}-basis for $\text{Hom}(T,\mathbb{G}_m)$, so a co-weight λ in $\text{Hom}(\mathbb{G}_m,T)$ is completely determined by the integers $\langle \lambda, \alpha \rangle$, for α in Δ, which may be arbitrary. Let P_+ be the cone of dominant co-weights, where $\langle \lambda, \alpha \rangle \geq 0$ for all $\alpha \in \Delta$.

A co-weight $\lambda : \mathbb{G}_m \to T$ gives a \mathbb{Z}-grading \mathfrak{g}_{λ} of $\mathfrak{g} = \text{Lie}(G)$, defined by
\[
\mathfrak{g}_{\lambda}(i) = \{ X \in \mathfrak{g} : \text{Ad}(\alpha)(X) = a^i \cdot X \}
\]
We say λ is minuscule provided $\lambda \neq 0$ and the grading \mathfrak{g}_{λ} satisfies $\mathfrak{g}_{\lambda}(i) = 0$ for $|i| \geq 2$. Thus
\[
\mathfrak{g} = \mathfrak{g}_{\lambda}(-1) + \mathfrak{g}_{\lambda}(0) + \mathfrak{g}_{\lambda}(1).
\]

The Weyl group $N_G(T)/T = W$ of T acts on the set of minuscule co-weights, and the W-orbits are represented by the dominant minuscule co-weights. These have been classified.

Proposition 1.2 (§D 1.2). The element λ is a dominant, minuscule co-weight if and only if there is a single simple root α with $\langle \lambda, \alpha \rangle = 1$, the root α has multiplicity 1 in the highest root β, and all other simple roots α' satisfy $\langle \lambda, \alpha' \rangle = 0$.

Thus, the W-orbits of minuscule co-weights correspond bijectively to simple roots α with multiplicity 1 in the highest root β. If λ is minuscule and dominant, $\mathfrak{g}_{\lambda}(1)$ is the direct sum of the positive root spaces \mathfrak{g}_{γ}, where γ is a positive root containing α with multiplicity 1. Hence the dimension N of $\mathfrak{g}_{\lambda}(1)$ is given by the formula
\[
N = \dim \mathfrak{g}_{\lambda}(1) = \langle \lambda, 2\rho \rangle,
\]
where ρ is half the sum of the positive roots.

The subgroup $W_{\lambda} \subset W$ fixing λ is isomorphic to the Weyl group of T in the subalgebra $\mathfrak{g}_{\lambda}(0)$, which has root basis $\Delta - \{\alpha\}$. We now tabulate the W-orbits of minuscule co-weights by listing the simple α occurring with multiplicity 1 in β in the numeration of Bourbaki B. We also tabulate $N = \dim \mathfrak{g}_{\lambda}(1)$ and $(W : W_{\lambda})$; a simple comparison shows that $(W : W_{\lambda}) \geq N + 1$ in all cases; we will explain this inequality later.
Table 1.4.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(W : W_\lambda)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_\ell</td>
<td>\alpha_k</td>
<td>\binom{\ell + 1}{k}</td>
<td>k(\ell + 1 - k)</td>
</tr>
<tr>
<td>1 \leq k \leq \ell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B_\ell</td>
<td>\alpha_1</td>
<td>2\ell</td>
<td>2\ell - 1</td>
</tr>
<tr>
<td>C_\ell</td>
<td>\alpha_\ell</td>
<td>2\ell</td>
<td>\ell(\ell+1)</td>
</tr>
<tr>
<td>D_\ell</td>
<td>\alpha_1, \alpha_\ell</td>
<td>2\ell - 2</td>
<td>\ell(\ell-1)</td>
</tr>
<tr>
<td>E_6</td>
<td>\alpha_1, \alpha_6</td>
<td>27</td>
<td>16</td>
</tr>
<tr>
<td>E_7</td>
<td>\alpha_1</td>
<td>56</td>
<td>27</td>
</tr>
</tbody>
</table>

2. The real form \(G_0 \)

We henceforth fix \(G \) and a dominant minuscule co-weight \(\lambda \). Let \(G_c \) be the compact real form for \(G \), so \(G = G_c(\mathbb{C}) \) and \(G_c(\mathbb{R}) \) is a maximal compact subgroup of \(G \). Let \(g \mapsto \overline{g} \) be the corresponding conjugation of \(G \).

Let \(T_c \subset G_c \) be a maximal torus over \(\mathbb{R} \). We have an identification of co-character groups

\[\text{Hom}_{\text{cont}}(S^1, T_c(\mathbb{R})) = \text{Hom}_{\text{alg}}(\mathbb{G}_m, T). \]

We view \(\lambda \) as a homomorphism \(S^1 \to T_c(\mathbb{R}) \), and define

\[\theta = \text{ad} \lambda(-1) \quad \text{in} \quad \text{Inn}(G). \]

Then \(\theta \) is a Cartan involution, which gives another descent \(G_0 \) of \(G \) to \(\mathbb{R} \). The group \(G_0 \) has real points

\[G_0(\mathbb{R}) = \{ g \in G : \overline{g} = \theta(g) \}, \]

and a maximal compact subgroup \(K \) of \(G_0(\mathbb{R}) \) is given by

\[K = \{ g \in G : g = \overline{g} \text{ and } g = \theta(g) \}, \]

\[= G_0(\mathbb{R}) \cap G_c(\mathbb{R}). \]

The corresponding decomposition of the complex Lie algebra \(\mathfrak{g} \) under the action of \(K \) is given by \(\mathfrak{g} = \mathfrak{k} + \mathfrak{p} \), with

\[\begin{cases} \mathfrak{k} = \text{Lie}(K) \otimes \mathbb{C} = \mathfrak{g}_\lambda(0) \\ \mathfrak{p} = \mathfrak{g}_\lambda(-1) + \mathfrak{g}_\lambda(1). \end{cases} \]

The torus \(\lambda(S^1) \) lies in the center of the connected component of \(K \), and the element \(\lambda(i) \) gives the symmetric space

\[\mathcal{D} = G_0(\mathbb{R})/K \]

a complex structure, with

\[N = \dim_{\mathbb{C}}(\mathcal{D}). \]

Proposition 2.4 ([D, 1.2]). The real Lie groups \(G_0(\mathbb{R}) \) and \(K \) have the same number of connected components, which is either 1 or 2. Moreover, the following are all equivalent:

1) \(G_0(\mathbb{R}) \) has 2 connected components.
2) The symmetric space \(\mathcal{D} \) is a tube domain.
3) The vertex of the Dynkin diagram of G corresponding to the simple root α is fixed by the opposition involution of the diagram.

4) The subgroup W_λ fixing λ has a nontrivial normalizer in W, consisting of those w with $w\lambda = \pm \lambda$.

In fact, the subgroup $W_c \subset W$ which normalizes W_λ is precisely the normalizer of the compact torus $T_c(R)$ in $G_0(R)$. When $W_\lambda \neq W_c$, it is generated by W_λ and the longest element w_0, which satisfies $w_0\lambda = -\lambda$.

As an example, let $G = SO_3$ and

$$\lambda(t) = \begin{pmatrix} t & 1 \\ 1 & t^{-1} \end{pmatrix}$$

Then θ is conjugation by

$$\lambda(-1) = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$$

and $G_0 = SO(1,2)$ has 2 connected components. We have $K \simeq O(2)$, $W_c = W$ has order 2 in this case, and $W_\lambda = 1$. The tube domain $D = G_0(R)/K$ is isomorphic to the upper half plane.

3. The Weyl Group (cf. [H])

The Weyl group W is a Coxeter group, with generating reflections s corresponding to the simple roots in Δ. Recall that ρ is half the sum of the positive roots and $W_\lambda \subset W$ is the subgroup fixing λ.

Proposition 3.1. Each coset wW_λ of W_λ in W has a unique representative y of minimal length. The length $d(y)$ of the minimal representative is given by the formula

$$d(y) = \langle \lambda, \rho \rangle - \langle w\lambda, \rho \rangle,$$

where w is any element in the coset.

Proof. Let R^\pm be the positive and negative roots, let R^+_λ be the subsets of positive and negative roots which satisfy $\langle \lambda, \gamma \rangle = 0$. Then $R^+ - R^- \subset R^+_\lambda$ consists of the roots with $\langle \lambda, \gamma \rangle = 1$, and $R^- - R^+ \subset R^-\lambda$ consists of the roots with $\langle \lambda, \gamma \rangle = -1$. These sets are stable under the action of W_λ on R. On the other hand, if $w \in W_\lambda$ stabilizes R^+_λ (or $R^-\lambda$), then $w = 1$, as W_λ is the Weyl group of the root system $R_\lambda = R^+_\lambda \cup R^-\lambda$.

Since the length $d(y)$ of y in W is given by

(3.2) $$d(y) = \# \{ \gamma \text{ in } R^+: y^{-1}(\gamma) \text{ is in } R^- \},$$

the set

(3.3) $$Y = \{ y \in W : y(R^-_\lambda) \subset R^+ \}$$

gives coset representatives for W_λ of minimal length. Moreover, for $y \in Y$ the set $y^{-1}(R^+)$ contains $d(y)$ elements of R^-_λ, and hence $N - d(y)$ elements of R^+_λ. Hence,
if \(wW_\lambda = yW_\lambda \), we find
\[
\langle w\lambda, \rho \rangle = \langle y\lambda, \rho \rangle = \langle \lambda, y^{-1}\rho \rangle = \frac{1}{2}((N - d(y)) - d(y)) = \frac{1}{2}N - d(y).
\]
Since
\[
\langle \lambda, \rho \rangle = \frac{1}{2}N,
\]
we obtain the desired formula. \(\square \)

As an example of Proposition 3.1, the minimal representative of \(W_\lambda \) is \(y = 1 \), with \(d(y) = 0 \), and the minimal representative of \(s_\alpha W_\lambda \) is \(y = s_\alpha \), with \(d(y) = 1 \). If \(w_0 \) is the longest element in the Weyl group, then \(w_0(R^0) = R^0 \), so \(w_0^2 = 1 \), and \(w_0\rho = -\rho \). Hence
\[
\langle w_0\lambda, \rho \rangle = \langle \lambda, w_0^{-1}\rho \rangle = -\langle \lambda, \rho \rangle = -N/2.
\]
Consequently, the length of the minimal representative \(y \) of \(w_0W_\lambda \) is \(d(y) = N \). This is the maximal value of \(d \) on \(W/W_\lambda \), and we will soon see that \(d \) takes all integral values in the interval \([0, N]\).

Assume \(\lambda \) is fixed by the opposition involution \(-w_0 \), so \(w_0\lambda = -\lambda \). Then \(D \) is a tube domain, and \(W_\lambda \) has nontrivial normalizer \(W_c = \langle W_\lambda, w_0 \rangle \) in \(W \) by Proposition 2.4. The 2-group \(W_c/W_\lambda \) acts on the set \(W/W_\lambda \) by \(wW_\lambda \mapsto w w_0 W_\lambda \), and this action has no fixed points. Hence we get a fixed point-free action \(y \mapsto y^* \) on the set \(Y \), and find that
\[
d(y) + d(y^*) = N. \tag{3.4}
\]

4. The flag variety

Associated to the dominant minuscule co-weight \(\lambda \) is a maximal parabolic subgroup \(P \), which contains \(B \) and has Lie algebra
\[
\text{Lie}(P) = g_\lambda(0) + g_\lambda(1).
\]
The flag variety \(X = G/P \) is projective, of complex dimension \(N \).

The cohomology of \(X \) is all algebraic, so \(H^{2n+1}(X) = 0 \) for all \(n \geq 0 \). Let
\[
f_X(t) = \sum_{n \geq 0} \dim H^{2n}(X) \cdot t^n
\]
be the Poincaré polynomial of \(H^*(X) \). Then we have the following consequence of Chevalley-Bruhat theory, which also gives a convenient method of computing the values of the function \(d : W/W_\lambda \to \mathbb{Z} \).

Proposition 4.3. 1) We have \(f_X(t) = \sum_Y t^d(y) \).

2) If \(G \) is the split adjoint group over \(\mathbb{Z} \) with the same root datum as \(G \), and \(P \) is the standard parabolic corresponding to \(\lambda \), then
\[
f_X(q) = \#G(F)/P(F)
\]
for all finite fields \(F \), with \(q = \#F \).

3) The Euler characteristic of \(X \) is given by
\[
\chi = f_X(1) = \#(W : W_\lambda).
\]
Proof. We have the decomposition
\[G = \bigcup_Y ByP, \]
where we have chosen a lifting of \(y \) from \(W \) to \(N_G(T) \). If \(U \) is the unipotent radical of \(B \), then \(B = UT \). Since \(y \) normalizes \(T \),
\[UyP = ByP. \]
This gives a cell decomposition
\[X = \bigcup_Y Uy/P \cap y^{-1}Uy \]
where the cell corresponding to \(y \) is an affine space of dimension \(d(y) \). This gives the first formula.

The formula for \(f_X(q) \) follows from the Bruhat decomposition, which can be used to prove the Weil conjectures for \(X \). Formula 3) for \(f_X(1) \) follows immediately from 1).

For example, let \(G = PSp_{2n} \) be of type \(C_n \). Then \(P \) is the Siegel parabolic subgroup, with Levi factor \(GL_n/\mu_2 \). From the orders of \(Sp_{2n}(q) \) and \(GL_n(q) \), we find that
\[
\#G(F)/P(F) = \frac{(q^2 - 1)(q^4 - 1) \ldots (q^{2n} - 1)}{(q - 1)(q^2 - 1) \ldots (q^n - 1)}
= (1 + q)(1 + q^2) \ldots (1 + q^n).
\]
Hence we find
\[
f_X(t) = (1 + t)(1 + t^2) \ldots (1 + t^n).
\]

The fact that \(X = G/P \) is a Kahler manifold imposes certain restrictions on its cohomology. For example, if \(\omega \) is a basis of \(H^2(X) \), then \(\omega^k \neq 0 \) in \(H^{2k}(X) \) for all \(0 \leq k \leq N \). Hence we find that

\textbf{Corollary 4.5.} The function \(d : W/W_\Lambda \rightarrow \mathbb{Z} \) takes all integral values in \([0, N]\), and \((W : W_\Lambda) \geq N + 1 \).

For \(0 \leq k \leq N \), let
\[m(k) = \# \{ y \in Y : d(y) = k \}. \]
We have seen that \(m(0) = m(1) = 1 \) in all cases. By Poincaré duality
\[
m(k) = m(N - k).
\]
Finally, the Lefschetz decomposition into primitive cohomology shows that
\[
m(k - 1) \leq m(k)
\]
whenever \(2k \leq N \). Indeed, the representation of the Lefschetz \(SL_2 \) on \(H^*(G/P) \) has weights \(N - 2d(y) \) for the maximal torus \(\begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix} \).
5. THE REPRESENTATION V OF THE DUAL GROUP \hat{G}

Let \hat{G} be the Langlands dual group of G, which is simply-connected of the dual root type. This group comes (in its construction) with subgroups $\hat{T} \subset \hat{B} \subset \hat{G}$, and an identification of the positive roots for \hat{B} in $\text{Hom}(\hat{T}, G_m)$ with the positive co-roots for \hat{B} in $\text{Hom}(G_m, T)$ (cf. [G]). Hence, the dominant co-weights for \hat{T} give dominant weights for \hat{B}, which are the highest weights for \hat{B} on irreducible representations of \hat{G}.

Let V be the irreducible representation of \hat{G}, whose highest weight for \hat{B} is the dominant, minuscule co-weight λ.

Proposition 5.1. The weights of \hat{T} on V consist of the elements in the W-orbit of λ. Each has multiplicity 1, so dim $V = (W : W_\lambda)$.

The central character χ of V is given by the image of λ in $\text{Hom}(\hat{T}, G_m)/\bigoplus_\Delta \mathbb{Z}\alpha^\vee$, and is nontrivial.

Proof. For μ and λ dominant, we write $\mu \leq \lambda$ if $\lambda - \mu$ is a sum of positive co-roots. These are precisely the other dominant weights for \hat{T} occurring in V_λ. When λ is minuscule, $\mu \leq \lambda$ implies $\mu = \lambda$, so only the W-orbit of λ occur as weights. Each has the same multiplicity as the highest weight, which is 1. Since $\mu = 0$ is dominant, λ is not in the span of the co-roots, and $\chi \neq 1$.

This result gives another proof of the inequality of Corollary 4.5: $(W : W_\lambda) \geq N + 1$. Indeed, let L be the unique line in V_λ fixed by \hat{B}. The fixer of L is the standard parabolic \hat{P} dual to P. This gives an embedding of projective varieties:

$$\hat{G}/\hat{P} \hookrightarrow P(V_\lambda).$$

Since \hat{G}/\hat{P} has dimension N, and $P(V_\lambda)$ has dimension $(W : W_\lambda) - 1$, this gives the desired inequality.

The real form G_0 defined in §2 has Langlands L-group

(5.2) $$L^G = \hat{G} \times \text{Gal}(C/R).$$

The action of $\text{Gal}(C/R)$ on \hat{G} exchanges the irreducible representation V with dominant weight λ with the dual representation V^* with dominant weight $-w_0\lambda$. Hence the sum $V + V^*$ always extends to a representation of L^G. The following is a simple consequence of Proposition 2.4.

Proposition 5.3. The following are equivalent:

1) We have $w_0\lambda = -\lambda$.
2) The symmetric space D is a tube domain.
3) The representation V is isomorphic to V^*.
4) The central character χ of V satisfies $\chi^2 = 1$.
5) The representation V of \hat{G} extends to a representation of L^G.

6. THE PRINCIPAL $SL_2 \to \hat{G}$

The group \hat{G} also comes equipped with a principal $\varphi : SL_2 \to \hat{G}$; see [G]. The co-character $G_m \to \hat{T}$ given by the restriction of φ to the maximal torus $\begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}$
of SL_2 is equal to 2ρ in $\text{Hom}(G_m, \hat{T}) = \text{Hom}(T, G_m)$. From this, and Proposition 5.1, we conclude the following:

Proposition 6.1. The restriction of the minuscule representation V to the principal SL_2 in G has weights

$$\bigoplus_{w/W_\lambda} t^{(w, 2\rho)}$$

for the maximal torus $\begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}$ in SL_2.

On the other hand, by Proposition 3.1, we have

$$\langle w, 2\rho \rangle = \langle \lambda, 2\rho \rangle - 2d(y) = N - 2d(y)$$

where $d(y)$ is the length of the minimal representative y in the coset wW_λ. Hence the weights for the principal SL_2 acting on V are the integers

$$N - 2d(y), \quad y \in Y$$

in the interval $[-N, N]$. Since these are also the weights of the Lefschetz SL_2 acting on the cohomology $H^*(G/P)$ by §4, we obtain the following:

Corollary 6.4. The representation of the principal SL_2 of \hat{G} on V is isomorphic to the representation of the Lefschetz SL_2 on the cohomology of the flag variety $X = G/P$.

7. Examples

We now give several examples of the preceding theory, using the notation for roots and weights of $[B]$.

If G is of type A_ℓ and $\alpha = \alpha_1$ we have $\lambda = e_1$. The flag variety G/P is projective space P^N, with $N = \ell$, and the Poincaré polynomial is $1 + t + t^2 + \cdots + t^N$. The dual group \hat{G} is SL_{N+1}, and V is the standard representation. The restriction of V to a principal SL_2 is irreducible, isomorphic to $S^N = \text{Sym}^N(C^2)$.

A similar result holds when G is of type B_ℓ, so $\alpha = \alpha_1$ and $\lambda = e_1$. Here G/P is a quadric of dimension $N = 2\ell - 1$, with $P(t) = 1 + t + \cdots + t^N$ as before. The dual group $\hat{G} = \text{Sp}_{2\ell}$, the representation V is the standard representation, and its restriction to the principal SL_2 is the irreducible representation S^N.

Next, suppose G is of type D_ℓ and $\alpha = \alpha_1$, so $\lambda = e_1$. Then G/P is a quadric of dimension $N = 2\ell - 2$, and we have $P(t) = 1 + t + \cdots + 2t^{\ell-1} + \cdots + t^N$. The dual group $\hat{G} = \text{Spin}_{2\ell}$, and V is the standard representation of the quotient $SO_{2\ell}$. Its restriction to the principal SL_2 is a direct sum $S^N + S^0$, where S^0 is the trivial representation.

A more interesting case is when G is of type C_ℓ, so $\alpha = \alpha_\ell$ and $\lambda = \frac{e_1 + e_2 + \cdots + e_\ell}{2}$. Here G/P is the Lagrangian Grassmanian of dimension $N = \frac{(\ell+1)}{2}$, and $P(t) = (1 + t)(1 + t^2) \cdots (1 + t^\ell)$ was calculated in (4.4). The dual group \hat{G} is $\text{Spin}_{2\ell+1}$, and V is the spin representation of dimension 2^ℓ. Its decomposition to a
principal SL_2 is given by §6, and we find the following representations, for $\ell \leq 6$:

$$
\begin{align*}
S^1 & \quad \ell = 1, \\
S^3 & \quad \ell = 2, \\
S^6 + S^0 & \quad \ell = 3, \\
S^{10} + S^4 & \quad \ell = 4, \\
S^{15} + S^9 + S^5 & \quad \ell = 5, \\
S^{21} + S^{15} + S^{11} + S^9 + S^3 & \quad \ell = 6.
\end{align*}
$$

As the last example, suppose G is of type E_6. Then G/P has dimension 16 and Poincaré polynomial

$$
P(t) = 1 + t + t^2 + t^3 + 2t^4 + 2t^5 + 2t^6 + 2t^7 + 3t^8 + 2t^9 + 2t^{10} + 2t^{11} + 2t^{12} + t^{13} + t^{14} + t^{15} + t^{16}.
$$

The representation V has dimension 27, and its restriction to a principal SL_2 is the representation

$$
S^{16} + S^8 + S^0.
$$

Proposition 7.3. The representation V of the principal SL_2 is irreducible, hence isomorphic to S^N, if and only if G is of type A_ℓ or B_ℓ and $\alpha = \alpha_1$.

The representation V of the principal SL_2 is isomorphic to $S^N + S^0$ if and only if G is of type D_ℓ and $\alpha = \alpha_1$, or G is of type D_4 and $\alpha = \alpha_3$ or α_4, or G is of type C_3 and $\alpha = \alpha_3$.

Proof. The condition $V = S^N$ as a representation of SL_2 is equivalent to the equality

$$
\dim V = (W : W_\lambda) = N + 1.
$$

The condition $V = S^N + S^0$ as a representation of SL_2 is equivalent to the equality

$$
\dim V = (W : W_\lambda) = N + 2.
$$

One obtains all the above cases by a consideration of the columns in Table 1.4. \square

8. Discrete series and a mirror theorem

Let G_0 be the real form of G described in §2, and let $G_0^+(\mathbb{R})$ be the connected component of $G_0(\mathbb{R})$. The L-packet of discrete series representations π^+ of $G_0^+(\mathbb{R})$ with infinitesimal character the W-orbit of ρ is in canonical bijection with the coset space $W_\lambda \setminus W$. Indeed, W_λ is the compact Weyl group of the simply-connected algebraic cover G_0^{sc} of G_0, and any discrete series for $G_0^{sc}(\mathbb{R})$ with infinitesimal character ρ has trivial central character, so it descends to the quotient group $G_0^+(\mathbb{R})$. On the other hand, such discrete series for $G_0^{sc}(\mathbb{R})$ are parameterized by their Harish-Chandra parameters in $\text{Hom}(T_0^{sc}(\mathbb{R}), S^1)/W_\lambda$, which lie in the W-orbit of ρ. The coset $W_\lambda \rho$ corresponds to the holomorphic discrete series, and the coset $W_\lambda w_0 \rho = W_\lambda w_0^{-1} \rho$ corresponds to the anti-holomorphic discrete series.

Proposition 8.1 ([V-Z] Prop. 6.19). Assume the discrete series π^+ of $G_0^+(\mathbb{R})$ has Harish-Chandra parameter $W_\lambda w_0^{-1} \rho$. Then π^+ has bigraded cohomology

$$
H^{p,q}(\mathfrak{g}, K^+; \pi^+) \simeq \mathbb{C}
$$
for $p + q = N$ and $q = d(y)$, the length of the minimal representative of wW_λ. The cohomology of π vanishes in all other bidegrees (p', q').

Proof. The bigrading of the (\mathfrak{g}, K^+) cohomology of any π^+ in the L-packet is discussed in [V-Z, (6.18)(a-c)]. The cohomology has dimension 1 for degree N, and dimension 0 otherwise, so we must have $p + q = N$.

On the other hand, Arthur (cf. [A, pp. 62–63]) interprets the calculation of [V-Z, Prop. 6.19] to obtain the formula

$$-\frac{1}{2}(p - q) = \langle \lambda, w^{-1}\rho \rangle = \langle w\lambda, \rho \rangle.$$

Since $\frac{1}{2}(p + q) = \langle \lambda, \rho \rangle$, we find that $q = \langle \lambda, \rho \rangle - \langle w\lambda, \rho \rangle = d(y)$, by Proposition 3.1.

If $G_0(\mathbb{R}) \neq G_0(\mathbb{R})^+$, the discrete series π for $G_0(\mathbb{R})$ with infinitesimal character ρ correspond to the coset space $W_c \backslash W$, where W_c is the (nontrivial) normalizer of W_λ in W. We find that the bigraded cohomology of π with Harish-Chandra parameter $W_\lambda w^{-1}\rho$ is the direct sum of two lines of type (p, q) and (q, p), with $p + q = N$ and $q = d(y)$.

The 2-group K/K^+ acts on $H^N(\mathfrak{g}, K^+, \pi)$, switching the two lines. When $p = q = N/2$, there is a unique line in $H^{p,p}(\mathfrak{g}, K^+, \pi)$ fixed by K/K^+.

A suggestive way to restate the calculation of the bigraded cohomology is the following.

Corollary 8.2. The Hodge structure on the sum $H^N(G_0) = \bigoplus_\pi H^{*,*}(\mathfrak{g}, K^+, \pi)$ over the L-packet of discrete series for $G_0(\mathbb{R})$ with infinitesimal character ρ mirrors the Hodge structure on $H^*(G/P)$. That is,

$$\dim H^{q,q}(G/P) = \dim H^{N-q,q}(G_0).$$

Indeed, both dimensions are equal to the number of classes wW_λ in W/W_λ with $d(w, W_\lambda) = q$.

9. **Discrete series for $SO(2, 2n)$**

Assume that G is of type D_{n+1} with $n \geq 2$, and that $\alpha = \alpha_1$. The group $G_0(\mathbb{R})$ is then isomorphic to $PSO(2, 2n) = SO(2, 2n)/(\pm 1)$, and D is a tube domain of complex dimension $N = 2n$. There are $n + 1$ discrete series representations π of $G_0(\mathbb{R})$ with infinitesimal character ρ. We will describe these as representations of $SO(2, 2n)$, with trivial central character, and will calculate their minimal K^+-types and Hodge cohomology.

Let V be a 2-dimensional real vector space, with a positive definite quadratic form, and write $-V$ for the same space, with the negative form. For $k = 0, 1, \ldots, n$ define the quadratic space

$$W_k = V_0 + V_1 + \cdots + (-V_k) + \cdots + V_n,$$

so $SO(W_k) \simeq SO(2, 2n)$, a maximal compact torus T_c in $SO(W_k)$ is given by $\prod_{i=0}^n SO(V_i)$, and a maximal compact, connected subgroup K^+ containing T_c is given by $SO(V_k) \ltimes SO(V_k^\perp)$. If e_i is a generator of $\text{Hom}(SO(V_i), S^1)$, then the character group of T_c is $\bigoplus_{i=0}^n \mathbb{Z}e_i$, and the roots of T_c on \mathfrak{g} are the elements

$$\gamma_{ij} = \pm e_i \pm e_j \quad i \neq j.$$
The compact roots of T_c on k are those roots γ_{ij} with $i \neq k + 1$ and $j \neq k + 1$, so the $(k + 1)$st coordinate of γ is zero.

A set of positive roots is given by

$$R^+ = \{e_i \pm e_j : i < j\}.$$

This has root basis

$$\Delta = \{e_0 - e_1, e_1 - e_2, \ldots, e_{n-1} - e_n, e_{n-1} + e_n\}$$

and

$$\rho = (n, n - 1, n - 2, \ldots, 1, 0).$$

On the other hand, half the sum

$$\rho_c = (n - 1, n - 2, \ldots, n - k, 0, n - k - 1, k, \ldots, 1, 0).$$

At the two extremes, we find that

$$k = 0 \quad \rho_c = (0, n - 1, n - 2, \ldots, 1, 0),$$

$$k = n \quad \rho_c = (n - 1, n - 2, \ldots, 1, 0, 0).$$

The lowest K^+-type of a discrete series π^+ for $SO(2, 2n)^+$ with Harish-Chandra parameter $\lambda = \rho$ is given by Schmid’s formula:

$$\lambda + \rho - 2\rho_c = 2(\rho - \rho_c).$$

For the realizations $SO(2, 2n) \cong SO(W_k)$ above, we obtain $n + 1$ discrete series π^+_k with minimal $K^+ \cong SO(2) \times SO(2n)$ type

$$\chi^{2(n-k)} \otimes (2, 2, 2, \ldots, 2, 0, 0 \ldots 0) \text{k times}$$

where χ is the fundamental character of $SO(2)$, giving the action on p^+. The irreducible representation of $SO(2n)$ with highest weight $2(e_1 + \cdots + e_k)$ appears with multiplicity 1 in $\operatorname{Sym}^2(\mathbf{C}^{2n})$, and the minimal K^+-type appears with multiplicity 1 in the representation $\wedge^k p_- \otimes \wedge^k p_+$. Hence the Hodge type of π^+_k is $(2n - k, k)$.

Each discrete series π_k of $SO(2, 2n)$ with infinitesimal character ρ decomposes as $\pi_k = \pi^+_k + \pi^-_k$ when restricted to $SO(2, 2n)^+$ with π^+_k as above, and π^-_k its conjugate by $G_0(\mathbf{R})/G_0(\mathbf{R})^+$. The minimal K^+-type of π^-_k is

$$\chi^{2(k-n)} \otimes (2, 2, 2, \ldots, 2, 0, 0 \ldots 0) \text{k times}$$

so π^-_k has Hodge type $(k, 2n - k)$, and π_k has Hodge type $(k, 2n - k) + (2n - k, k)$.

If we label the simple roots in the Dynkin diagram for G, white for non-compact roots, black for compact roots, then the discrete series π_k of $SO(2, 2n)$ gives the labelled diagram below.

In the case $k = 0$, π_k is the sum of holomorphic and anti-holomorphic discrete series, and is an admissible representation of the subgroup $SO(2) \subset K^+$. In the case $k = n$, π_n is admissible for the subgroup $SO(2n) \subset K^+$, and has Hodge type $(n, n) + (n, n)$.

10. A CLASSIFICATION THEOREM: \(V = C e + V_0 \)

We now return to the restriction of a minimal representation \(V \) of \(\hat{G} \) to a principal \(SL_2 \) in \(\hat{G} \). Since \(V \) will be fixed, we will replace the simply-connected group \(\hat{G} \) by its quotient which acts \textit{faithfully} on \(V \), and will henceforth use the symbol \(G \) for this subgroup of \(GL(V) \). The group \(G \) is therefore no longer necessarily of adjoint type. We have

\[
X_\bullet(T) = \mathbb{Z}\lambda + \bigoplus_{\text{co-roots}} \mathbb{Z}\alpha^\vee
\]

and \(\ell\lambda \) lies in the sublattice \(\bigoplus \mathbb{Z}\alpha^\vee \), with \(\ell \) the order of the (cyclic) center of \(\hat{G} \). Since \(\langle \alpha^\vee, \rho \rangle \) is an integer for all co-roots, we find that \(\rho \) is in \(X_\bullet(T) \) if and only if \(\langle \lambda, \rho \rangle \) is an integer. By (1.3) this occurs precisely when the integer \(N = \dim_{\mathbb{C}}(D) \) is even. Since the center \(\langle \pm 1 \rangle \) of a principal \(SL_2 \) in \(\hat{G} \) acts on \(V \) by the character \((-1)^N \), we see that \(\rho \) is in \(X_\bullet(T) \) precisely when principal homomorphism \(SL_2 \to \hat{G} \) factors through the quotient group \(PGL_2 \).

\textbf{Proposition 10.2.} Assume that there is a non-zero linear form \(t: V \to \mathbb{C} \) which is fixed by the principal \(SL_2 \to \hat{G} \), and that the subgroup \(\hat{H} \) of \(\hat{G} \) fixing \(t \) acts \textit{irreducibly} on the hyperplane \(V_0 = \ker(t) \).

Then (up to the action of the outer automorphism group of the simply-connected cover of \(\hat{G} \)) the representation \(V \) is given by the following table:

<table>
<thead>
<tr>
<th>(\hat{G})</th>
<th>(V)</th>
<th>(\hat{H})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SL_{2n}/\mu_2)</td>
<td>(C^{2n})</td>
<td>(S_{p_{2n}}/\mu_2)</td>
</tr>
<tr>
<td>(SO_{2n})</td>
<td>(C^{2n})</td>
<td>(SO_{2n-1})</td>
</tr>
<tr>
<td>(E_6)</td>
<td>(C^{27})</td>
<td>(F_4)</td>
</tr>
<tr>
<td>(Spin_7)</td>
<td>(C^8)</td>
<td>(G_2)</td>
</tr>
</tbody>
</table>

\textbf{Proof.} By definition, \(\hat{H} \) contains the image of the principal \(SL_2 \) (which is isomorphic to \(PGL_2 \)). These subgroups of simple \(\hat{G} \) have been classified by de Siebenthal.
One has the chains:

\[SL_2 \to SO_{2n+1} \to SL_{2n+1}, \]
\[SL_2 \to Sp_{2n} \to SL_{2n}, \]
\[SL_2 \to SO_{2n-1} \to SO_{2n}, \]
\[SL_2 \to F_4 \to E_6, \]
\[SL_2 \to G_2 \to \text{Spin}_7 \to SO_8, \]
\[SL_2 \to G_2 \to SO_7 \to SL_7. \]

It is then a simple matter to check, for any \(V \), whether an \(\hat{H} \) containing the principal \(SL_2 \) can act irreducibly on \(V_0 \).

Beyond the examples given in Proposition 10.2, we have one semi-simple example with the same properties:

\[(10.3) \quad \hat{G} = SL_n^2/\Delta \mu_n \quad V = C^n \otimes (C^n)^* \quad \hat{H} = PGL_n.\]

In all cases, \(\hat{H} \) is a group of adjoint type.

Proposition 10.4. For the groups \(\hat{G} \) in Proposition 10.2, the center is cyclic of order \(\ell \geq 2 \). The integer \(\ell \) is the number of irreducible representations in the restriction of \(V \) to a principal \(SL_2 \).

The \(\hat{G} \)-invariants in the symmetric algebra on \(V^* \) form a polynomial algebra, on one generator \(d : V \to C \) of degree \(\ell \). The group \(\hat{G} \) has an open orbit on the projective space of lines in \(V \), with connected stabilizer \(\hat{H} \), consisting of the lines where \(d(v) \neq 0 \).

Proof. The first assertion is proved by an inspection of the following table. We derive the decomposition of \(V \) from §6.

<table>
<thead>
<tr>
<th>(\hat{G})</th>
<th>(\ell = \text{order of center})</th>
<th>\text{decomp. of } V</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SL_2n/\mu_2)</td>
<td>(n \geq 2)</td>
<td>(S^{4n-4} + S^{4n-8} + \cdots + S^4 + S^0)</td>
</tr>
<tr>
<td>(SO_{2n})</td>
<td>2</td>
<td>(S^{2n-2} + S^0)</td>
</tr>
<tr>
<td>(E_6)</td>
<td>3</td>
<td>(S^{16} + S^8 + S^0)</td>
</tr>
<tr>
<td>(\text{Spin}_7)</td>
<td>2</td>
<td>(S^6 + S^0)</td>
</tr>
<tr>
<td>(SL_n^2/\Delta \mu_n)</td>
<td>(n \geq 2)</td>
<td>(S^{2n-2} + S^{2n-4} + \cdots + S^2 + S^0)</td>
</tr>
</tbody>
</table>

The calculation of \(S^\bullet(V^*)\hat{G} \) follows from [S-K], which also identifies the connected component of the stabilizer with \(\hat{H} \). Note that the degree of any invariant is divisible by \(\ell \), as the center acts faithfully on \(V^* \).

11. The representation \(V \) of \(\hat{H} \)

Recall that \(\ell \geq 2 \) is the order of the cyclic center of \(\hat{G} \), tabulated in 10.5. Since the subgroup \(\hat{H} \subset \hat{G} \) fixing the linear form \(t : V \to C \) is reductive, we have a splitting of \(\hat{H} \)-modules

\[(11.1) \quad V = Ce + V_0 \]
with \(V_0 = \ker(t) \), and \(e \) a vector fixed by \(\hat{H} \) satisfying \(t(e) \neq 0 \). Once \(t \) has been chosen, we may normalize \(e \) by insisting that

\[
(11.2) \quad t(e) = \ell.
\]

Proposition 11.3. The representation \(V_0 \) of \(\hat{H} \) is orthogonal. Its weights consist of the short roots of \(\hat{H} \) and the zero weight. The zero weight space for \(\hat{H} \) in \(V \) has dimension \(\ell \), and \(V \) is a polar representation of \(\hat{H} \) of type \(A_{\ell-1} \): the \(\hat{H} \)-invariants in the symmetric algebra of \(V \simeq V^* \) form a polynomial algebra, with primitive generators in degrees \(1, 2, 3, \ldots, \ell \).

Proof. The fact that \(V_0 \) is orthogonal, and its weights, are obtained from a consideration of the table in Proposition 10.2. Since

\[
\dim V = \ell + \# \{ \text{short roots of } \hat{H} \},
\]

this gives the dimension of the zero weight space.

Let \(\hat{S} \subset \hat{H} \) be a maximal torus, with normalizer \(\hat{N} \). The image of \(\hat{N}/\hat{S} \) in \(GL(V^{\hat{S}}) = GL_\ell \) is the symmetric group \(\Sigma_\ell \). The fact that \(V \) is polar follows from the tables in [D-K], which also gives an identification of algebras: \(S^*(V)^{\hat{H}} \simeq S^*(V^{\hat{S}})^{\hat{N}/\hat{S}} \). The latter algebra is generated by the elementary symmetric functions, of degrees \(1, 2, 3, \ldots, \ell \).

Note 11.4. The integer \(\ell \) is also the number of distinct summands in the restriction of \(V \) to a principal \(SL_2 \). Since each summand is an orthogonal representation of \(SL_2 \), \(\ell = \dim V^S_0 \), where \(S_0 \subset SL_2 \) is a maximal torus. Hence \(V^S_0 = V^S \).

We will now define an \(\hat{H} \)-algebra structure on \(V \), with identity element \(e \), in a case by case manner. Although the multiplication law \(V \otimes V \rightarrow V \) is not in general associative, it is power associative, and for \(v \in V \) and \(k \geq 0 \) we can define \(v^k \) in \(V \) unambiguously. The primitive \(\hat{H} \)-invariants in \(S^*(V^*) \) can then be given by

\[
(11.5) \quad v \mapsto t(v^k) \quad 1 \leq k \leq \ell.
\]

In (11.5), \(t: V \rightarrow C \) is the \(\hat{H} \)-invariant linear form, normalized by the condition that

\[
t(e) = \ell.
\]

We will also identify the \(\hat{G} \)-invariant \(\ell \)-form \(\det: V \rightarrow C \), normalized by the condition that

\[
\det(e) = 1.
\]

The simplest case, when the algebra structure on \(V \) is associative, is when \(\hat{H} = PGL_n \) and \(V \) is the adjoint representation (of \(GL_n \)) on \(n \times n \) matrices. The algebra structure is matrix multiplication, \(e \) is the identity matrix, \(t \) is the trace, and \(\det \) is the determinant (which is invariant under the larger group \(\hat{G} = SL_n \times SL_n/\Delta \mu_n \) acting by \(v \mapsto AvB^{-1} \)).

Another algebra structure on \(V \), with the same powers \(v^k \), is given by the Jordan multiplication \(A \circ B = \frac{1}{4}(AB + BA) \). This algebra is isomorphic to the Jordan algebra of Hermitian symmetric \(n \times n \) matrices over the quadratic \(C \)-algebra \(C + C \), with involution \((z, w) = (w, z) \).

The representation \(V \) has a similar Jordan algebra structure when \(\hat{H} = PSp_{2n} \) and when \(\hat{H} = F_4 \). In the first case, \(V \) is the algebra of Hermitian symmetric \(n \times n \)
matrices over the complex quaternion algebra $M_2(\mathbb{C})$, and in the second V is the algebra of Hermitian symmetric 3×3 matrices over the complex octonion algebra.

When $\tilde{H} = SO_{2n-1}$, the representation $V = \mathbb{C}e + V_0$ has a Jordan multiplication given by the quadratic form \langle , \rangle on V. We normalize this bilinear paring to satisfy $\langle e, e \rangle = 2$, so $\det(v) = \frac{\langle v, v \rangle}{2}$ is the \tilde{G}-invariant 2-form on V. The multiplication is defined, with e as identity, by giving the product of two vectors v, w in V_0:

$$v \cdot w = \frac{1}{2} \langle v, w \rangle e.$$

Finally, when $\tilde{H} = G_2$, the representation V of dimension 8 has the structure of an octonion algebra, with $t(v) = v + \bar{v}$ and $\det(v) = v \bar{v}$. In all cases but this one \tilde{H} is the connected subgroup of $GL(V)$ preserving \det, and \tilde{H} is the subgroup of $GL(V)$ preserving all the forms $t(v^k)$ for $1 \leq k \leq \ell$. In the octonionic case, the subgroup $SO_8 \subset GL_8$ preserves \det, and the subgroup $SO_7 \subset SO_8$ preserves $t(v)$ and $t(v^2)$.

In general, $\det: V \to \mathbb{C}$ is a polynomial in the \tilde{H}-invariants $t(v^k)$, given by the Newton formulae. The expression for $\ell! \cdot \det$ has integral coefficients; for example,

$$\begin{align*}
(11.6) \\
\begin{cases} \\
2 \ell! \cdot \det(v) = t(v)^2 - t(v^2) & \ell = 2 \\
6 \ell! \cdot \det(v) = t(v)^3 - 3t(v^2)t(v) + 2t(v^3) & \ell = 3.
\end{cases}
\end{align*}$$

12. Representations of G lifted from H

We now describe the finite dimensional irreducible holomorphic representations π of G which are lifted from irreducible representations π' of H. This notion of lifting is due to Langlands: the parameter of π, which is a homomorphism $\varphi: \mathbb{C}^* \to \tilde{G}$ up to conjugacy, should factor through a conjugate of \tilde{H}.

We can parameterize the finite dimensional irreducible holomorphic representations π of G by their highest weights ω for B. The weight ω is a positive, integral combination of the fundamental weights ω_i of the simply-connected cover of G, so we may write (using the numeration of $[B]$)

$$\omega = \sum_{i=1}^{\text{rank}(G)} b_i \omega_i \quad \text{for } b_i \geq 0.$$

(12.1)

For ω to be a character of G, there are some congruences which must be satisfied by the coefficients b_i. (The group G is not simply connected, as its dual \tilde{G} acts faithfully on the minuscule representation V.)

Since

$$\text{rank}(G) = \text{rank}(H) + (\ell - 1),$$

(12.2)

there are $(\ell - 1)$ linear conditions on the coefficients b_i which are necessary and sufficient for π to be lifted from π' of H. These conditions refine the congruences, and we tabulate them in Table 12.3 below.

When $G = SL_{2n}/\mu_n$, SO_{2n}, or Sp_{2n}/μ_2 there are more classical descriptions of ω in the weight spaces \mathbb{R}^{2n}, \mathbb{R}^n, and \mathbb{R}^3, respectively. We describe, in this language, which representations are lifted from H.
Table 12.3.

\[
\begin{array}{|c|c|c|c|}
\hline
G & H & \omega = \sum b_i \omega_i \text{ of } G & \omega \text{ lifted from } H \\
\hline
SL_{2n}/\mu_n & \text{Spin}_{2n+1} & \sum_{i=1}^{n-1} i(b_i - b_{2n-i}) \equiv 0(n) & b_i = b_{2n-i} \\
& & b_i = b_{2n-i} & 1 \leq i \leq n - 1 \\
SO_{2n} & Sp_{2n-2} & b_{n-1} - b_n \equiv 0(2) & b_{n-1} = b_n \\
E_6/\mu_3 & F_4 & (b_1 - b_3) + 2(b_2 - b_5) \equiv 0(3) & b_1 = b_6 \quad b_2 = b_5 \\
Sp_{6}/\mu_2 & G_2 & b_1 - b_3 \equiv 0(2) & b_1 = b_3 \\
SL_n \times SL_n' / \Delta \mu_n & SL_n & \sum_{i=1}^{n-1} i(b_i - b'_{n-1}) \equiv 0(n) & b_i = b'_{n-1} \\
& & & 1 \leq i \leq n - 1 \\
\hline
\end{array}
\]

For \(G = SL_{2n}/\mu_n \), a dominant weight \(\omega \) is a vector \((a_1, a_2, \ldots, a_{2n})\) in \(\mathbb{R}^{2n} \) with

\[
a_1 \geq a_2 \geq \cdots \geq a_{2n},
\]

\[
a_i \quad \text{ in } \frac{1}{2} \mathbb{Z} \quad 1 \leq i \leq 2n,
\]

\[
a_i \equiv a_j \pmod{\mathbb{Z}},
\]

\[
\sum a_i = 0.
\]

The representations lifted from \(\text{Spin}_{2n+1} \) give dominant weights \(\omega \) with

\[
a_i + a_{2n+1-i} = 0 \quad 1 \leq i \leq n.
\]

In particular, \(a_n \geq 0 \geq a_{n+1} \), as \(a_n + a_{n+1} = 0 \).

For \(G = SO_{2n} \), a dominant weight \(\omega \) is a vector \((a_1, \ldots, a_n)\) in \(\mathbb{Z}^n \) with

\[
a_1 \geq a_2 \geq \cdots \geq a_{n-1} \geq |a_n|.
\]

The representations lifted from \(Sp_{2n-2} \) satisfy \(a_n = 0 \).

Finally, for \(G = Sp_6/\mu_2 \), a dominant weight is given classically as a vector \((a_1, a_2, a_3)\) in \(\mathbb{Z}^3 \) with \(a_1 \geq a_2 \geq a_3 \geq 0 \) and \(a_1 \equiv a_2 + a_3 \pmod{2} \). The representations lifted from \(G_2 \) are those with \(a_1 = a_2 + a_3 \).

Define a connected, reductive subgroup \(L \) of \(G \) as follows:

- \(G = SL_{2n}/\mu_n \) \(L = SL_n^2 / \Delta \mu_n \) fixing a decomposition of the standard representation of \(SL_{2n} : \mathbb{C}^{2n} = \mathbb{C}^n + \mathbb{C}^n \), and having determinant 1 on each factor

- \(G = SO_{2n} \) \(L = SO_{n+1} \) fixing a non-degenerate subspace \(\mathbb{C}^{n-1} \) in the standard representation \(\mathbb{C}^{2n} \)

- \(G = E_6/\mu_3 \) \(L = SL_6/\mu_3 \) fixing the highest and lowest root spaces in the adjoint representation

- \(G = Sp_6/\mu_2 \) \(L = SL_3^2 / \Delta \mu_2 \) fixing a decomposition of the standard representation of \(Sp_6 : \mathbb{C}^6 = \mathbb{C}^2 + \mathbb{C}^2 + \mathbb{C}^2 \) into three non-degenerate, orthogonal subspaces

- \(G = SL_n^2 / \Delta \mu_n \) \(L = PGL_n \) fixing the identity matrix in the representation on \(M_n(\mathbb{C}) \)
Proposition 12.4. The finite dimensional irreducible representation π of G is lifted from H if and only if the space Hom_L(π, C) of L-invariant linear forms on π is non-zero. In this case, the dimension of the space of L-invariant linear forms is given by the following table:

<table>
<thead>
<tr>
<th>G</th>
<th>ω lifted from H</th>
<th>dim Hom_L(π, C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_{2n}/μ_n</td>
<td>b_1(ω_1 + ω_2) + b_2(ω_2 + ω_3) + ... + b_{n-1}(ω_{n-1} + ω_n) + b_nω_n</td>
<td>b_n + 1</td>
</tr>
<tr>
<td>SO_{2n}</td>
<td>b_1ω_1 + b_2ω_2 + ... + b_{n-2}ω_{n-2} + b_{n-1}(ω_{n-1} + ω_n) + b_nω_n</td>
<td>\prod_{1≤i<j≤n-2} b_1b_2+...+b_{j-1}+j-i</td>
</tr>
<tr>
<td>E_6/μ_3</td>
<td>b_1(ω_1 + ω_6) + b_2(ω_2 + ω_3) + b_3(ω_3 + ω_5) + b_4ω_4</td>
<td>(b_2+1)(b_4+1)(b_2+b_4+2)</td>
</tr>
<tr>
<td>Sp_6/μ_2</td>
<td>b_1(ω_1 + ω_3) + b_2ω_2</td>
<td>b_2 + 1</td>
</tr>
<tr>
<td>SL_{n}/Δμ_n</td>
<td>V ⊗ V*</td>
<td>1</td>
</tr>
</tbody>
</table>

13. The proof of Proposition 12.4

The only easy case is when G = SL_{2n}/Δμ_n, so an irreducible π has the form V ⊗ V', where V and V' are irreducible representations of SL_n with inverse central characters. We have

\text{Hom}_L(π, C) = \text{Hom}_{SL_n}(V ⊗ V', C)

This space is non-zero if and only if V' ∼= V*, when it has dimension 1 by Schur’s lemma. These are exactly the π lifted from H.

When G = Sp_6/μ_2 and L = SL_{2n}/μ_n, the space Hom_L(π, C) was considered in [GS]. In the other cases, the subgroup L may be obtained as follows. Let G_R be the quasi-split inner form of G with non-trivial Galois action on the Dynkin diagram, and let K_R be a maximal compact subgroup of G_R. We have

<table>
<thead>
<tr>
<th>G</th>
<th>G_R</th>
<th>K_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_{2n}/μ_n</td>
<td>SU_{n,n}/μ_n</td>
<td>S(U_n × U_n)/μ_n</td>
</tr>
<tr>
<td>SO_{2n}</td>
<td>SO_{n+1,n-1}</td>
<td>S(O_{n+1} × O_{n-1})</td>
</tr>
<tr>
<td>E_6/μ_3</td>
<td>2E_6,4/μ_3</td>
<td>(SU_2 × SU_6/μ_3)/Δμ_2</td>
</tr>
</tbody>
</table>

Note that in each case we have a homomorphism

L ↪ K = complexification of K_R.

The image is a normal subgroup, and the connected component of the quotient is isomorphic to SO_2, SO_n-1, and SO_3, respectively.

There is a real parabolic P_R in G_R associated to the fixed vertices of the Galois action on the Dynkin diagram. The derived subgroup of a Levi factor of P_R is given in the diagram below.

Let B_R be the Borel subgroup of G_R contained in P_R, and let T_R be a Levi factor of B_R.

In the Cartan-Heegelsson theorem, one uses the Cartan decomposition G_R = K_R · B_R to show that K has an open orbit on the complex flag variety
G/B, with stabilizer the subgroup \(T^0 \) of \(T \) fixed by the Cartan involution. The representations \(\pi \) of \(G \) with \(\text{Hom}_K(\pi, \mathbb{C}) \neq 0 \) are those whose highest weight \(\chi \) is trivial on \(T^0 \), in which case \(\text{Hom}_K(\pi, \mathbb{C}) \) has dimension 1. This is proved in [G-W, 12.3], where the subgroup \(T \) is also calculated.

Similarly, one shows that the subgroup \(L \) of \(K \) has an open orbit on the \(G/P \) variety, with stabilizer the connected component of \(T \), which is a torus. The representations \(\pi \) of \(G \) with \(\text{Hom}_L(\pi, \mathbb{C}) \neq 0 \) are those whose highest weight \(\chi \) is trivial on \((T^0)^0 \). We find that these, after a brief calculation, are those lifted from \(H \). The space \(\text{Hom}_L(\pi, \mathbb{C}) \) is isomorphic, as a representation of \(K/L \), to the irreducible representation of the Levi factor of \(P \) which has highest weight \(\chi \). This completes the proof.

14. The real form of \(L \)

We now descend the subgroup \(L \to G \) defined before Proposition 12.4 to a subgroup \(L_0 \to G_0 \) over \(\mathbb{R} \), by using minuscule co-weights. Let \(S \) be a maximal torus in \(L \), and let \(\lambda : \mathbb{G}_m \to T \) be a minuscule co-weight which occurs in the representation \(V \) of \(G \).

Proposition 14.1. There is an inclusion \(\alpha : L \to G \) mapping \(S \) into \(T \), and a minuscule co-weight \(\mu : \mathbb{G}_m \to S \) of \(L \), such that the following diagram commutes:

\[
\begin{array}{ccc}
\mathbb{G}_m & \xrightarrow{\mu} & S \\
\downarrow & & \downarrow \alpha \\
BG_\mu & \xrightarrow{\lambda} & T & \to & G \\
\end{array}
\]

Proof. If \(\alpha_0 : L \to G \) is any inclusion, the image of \(S \) is contained in a maximal torus \(T_0 \) of \(G \). Since \(T \) and \(T_0 \) are conjugate, we may conjugate \(\alpha_0 \) to an inclusion \(\alpha : L \to G \) mapping \(S \) into \(T \).

The co-character group \(X_\bullet(S) \) then injects into \(X_\bullet(T) \). To finish the proof, we must identify the image, and show that it intersects the \(W \)-orbit of \(\lambda \) in a single \(W_L \)-orbit of minuscule co-weights for \(L \). We check this case by case. For example, if \(G = E_6/\mu_3 \) and \(L = SL_6/\mu_3 \), the group \(X_\bullet(T) \) is the dual \(E_6^\vee \) of the \(E_6 \)-root lattice, and \(X_\bullet(S) \) is the subgroup orthogonal to a root \(\beta \). One checks, using the tables in Bourbaki [B], that precisely 15 of the 27 elements in the orbit \(W\lambda \) are orthogonal to each \(\beta \), and that these give a single \(W_\beta = W_{SL_6} \) orbit.
In each case, we tabulate the dimension of T/S, and the size of the W_L-orbit $W\lambda \cap X_{\bullet}(S) = W_L\mu$.

<table>
<thead>
<tr>
<th>G</th>
<th>L</th>
<th>$\dim(T/S)$</th>
<th>$#W\lambda$</th>
<th>$#W_L\mu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_{2n}/μ_n</td>
<td>SL_{2n}/μ_n</td>
<td>1</td>
<td>$2n^2 - n$</td>
<td>n^2</td>
</tr>
<tr>
<td>SO_{2n}</td>
<td>SO_{n+1}</td>
<td>$\frac{n+1}{2}$ n odd</td>
<td>$2n$</td>
<td>$n + 1$ n odd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\frac{n}{2}$ n even</td>
<td></td>
<td>n n even</td>
</tr>
<tr>
<td>E_6/μ_3</td>
<td>SL_6/μ_3</td>
<td>1</td>
<td>27</td>
<td>15</td>
</tr>
<tr>
<td>Sp_6/μ_2</td>
<td>SL_3/μ_2</td>
<td>0</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>SL_n^2/μ_n</td>
<td>PGL_n</td>
<td>$n - 1$</td>
<td>n^2</td>
<td>n</td>
</tr>
</tbody>
</table>

Corollary 14.3. If L_0 is the real form of L with Cartan involution $\theta = \text{ad } \mu(-1)$, then L_0 embeds as a subgroup of G_0 over \mathbb{R}. The symmetric space $D_L = L_0(\mathbb{R})/K_{L_0}$ has an invariant complex structure, and embeds analytically into D. Moreover,

$$\dim_C D_L = \frac{1}{2} \dim_C D.$$

The last inequality is checked, case by case. We tabulate G_0, L_0, $\dim D$, and $\dim D_L$ below.

<table>
<thead>
<tr>
<th>G_0</th>
<th>L_0</th>
<th>$\dim D$</th>
<th>$\dim D_L$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$SU_{2,2n-2}/\mu_n$</td>
<td>$SU_{1,n-1}/\mu_n$</td>
<td>$4n - 4$</td>
<td>$2n - 2$</td>
</tr>
<tr>
<td>$SO_{2,2n-2}$</td>
<td>$SO_{2,n-1}$</td>
<td>$2n - 2$</td>
<td>$n - 1$</td>
</tr>
<tr>
<td>$^2E_{6,2}/\mu_3$</td>
<td>$SU_{2,4}/\mu_3$</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Sp_6/μ_2</td>
<td>SL_3/μ_2</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>$SU_{1,n-1}/\mu_m$</td>
<td>$PU_{1,n-1}$</td>
<td>$2n - 2$</td>
<td>$n - 1$</td>
</tr>
</tbody>
</table>

Since $\dim D_L = \frac{1}{2} \dim D$, this suggests the following problem. Let $G_\mathbb{Q}$ and $L_\mathbb{Q}$ be descents of G_0 and L_0 to \mathbb{Q}, with $L_\mathbb{Q} \hookrightarrow G_\mathbb{Q}$. This gives a morphism of Shimura varieties

$$S_L \to S_G$$

over \mathbb{C}, with $\dim(S_L) = \frac{1}{2} \dim S_G$. The algebraic cycles corresponding to S_L contribute to the middle cohomology $H^{\dim S_G} (S_G, \mathbb{C})$. Can these Hodge classes detect the automorphic forms lifted from H?

15. THE GROUP \hat{G} IN A LEVI FACTOR

Recall that the center μ_ℓ of \hat{G} is cyclic. Let

$$(15.1) \quad \hat{J} = G_m \times \hat{G}/\Delta \mu_\ell,$$

which is a group with connected center. We first observe that \hat{J} is a Levi factor in a maximal parabolic subgroup \hat{P} of a simple group of adjoint type \hat{M}. The minuscule
representation V occurs as the action of \hat{J} on the abelianization of the unipotent radical \hat{U} of \hat{P}.

Recall that the maximal parabolic subgroups \hat{P} of \hat{M} are indexed, up to conjugacy, by the simple roots α. We tabulate \hat{M}, the simple root α corresponding to \hat{P}, and the representation $U^{ab} = V$ below:

<table>
<thead>
<tr>
<th>\hat{G}</th>
<th>\hat{M}</th>
<th>α of \hat{P}</th>
<th>$V = U^{ab}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_{2n}/μ_2</td>
<td>PSO_{4n}</td>
<td>α_{2n}</td>
<td>\mathbb{C}^{2n}</td>
</tr>
<tr>
<td>SO_{2n}</td>
<td>PSO_{2n+2}</td>
<td>α_1</td>
<td>\mathbb{C}^{2n}</td>
</tr>
<tr>
<td>E_6</td>
<td>E_7</td>
<td>α_7</td>
<td>\mathbb{C}^{27}</td>
</tr>
<tr>
<td>Spin$_7$</td>
<td>F_4</td>
<td>α_4</td>
<td>\mathbb{C}^8</td>
</tr>
<tr>
<td>SL_n^2/μ_n</td>
<td>PGL_{2n}</td>
<td>α_n</td>
<td>$\mathbb{C}^n \otimes \mathbb{C}^n$</td>
</tr>
</tbody>
</table>

Proposition 15.2. The centralizer of \hat{H} in \hat{M} is SO_3, and $\hat{H} \times SO_3$ is a dual reductive pair in \hat{M}.

This is checked case by case, and we list the pairs obtained below:

- $SO_3 \times PSp_{2n} \subset PSO_{4n}$,
- $SO_3 \times SO_{2n-1} \subset PSO_{2n+2}$,
- $SO_3 \times F_4 \subset E_7$,
- $SO_3 \times G_2 \subset F_4$,
- $SO_3 \times PGL_n \subset PGL_{2n}$.

References

Science Center 325, Harvard University, One Oxford Street, Cambridge, MA 02138

E-mail address: gross@math.harvard.edu