Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165



An analytic Riemann-Hilbert correspondence for semi-simple Lie groups

Authors: Laura Smithies and Joseph L. Taylor
Journal: Represent. Theory 4 (2000), 398-445
MSC (2000): Primary 22E46; Secondary 18D99, 55N91
Published electronically: September 12, 2000
MathSciNet review: 1780717
Full-text PDF

Abstract | References | Similar Articles | Additional Information


Geometric Representation Theory for semi-simple Lie groups has two main sheaf theoretic models. Namely, through Beilinson-Bernstein localization theory, Harish-Chandra modules are related to holonomic sheaves of $\mathcal D$ modules on the flag variety. Then the (algebraic) Riemann-Hilbert correspondence relates these sheaves to constructible sheaves of complex vector spaces. On the other hand, there is a parallel localization theory for globalized Harish-Chandra modules---i.e., modules over the full semi-simple group which are completions of Harish-Chandra modules. In particular, Hecht-Taylor and Smithies have developed a localization theory relating minimal globalizations of Harish-Chandra modules to group equivariant sheaves of $\mathcal D$ modules on the flag variety. The main purpose of this paper is to develop an analytic Riemann-Hilbert correspondence relating these sheaves to constructible sheaves of complex vector spaces and to discuss the relationship between this ``analytic'' study of global modules and the preceding ``algebraic'' study of the underlying Harish-Chandra modules.

References [Enhancements On Off] (What's this?)

  • [BB] A. Beilinson, J. Bernstein, Localisation de ${\mathfrak{g}}$-modules, C.R. Acad. Sci. Paris, Sér. 1 292 (1981), 15-18. MR 82k:14015
  • [BB2] A. Beilinson, J. Bernstein, Proof of Jantzen conjectures, Advances in Soviet Math. 16 Gelfand Seminar, (1983), pp. 1-50. MR 95a:22022
  • [BBr] W. Borho, J.-L. Brylinski, Differential operators on homogeneous spaces II, Bull. Soc. Math. France 117 (1989), no. 2, pp 167-210. MR 90j:17023
  • [BL] J. Bernstein, V. Lunts, Equivariant sheaves and functors, Springer Lecture Notes in Math. 1578 (1994). MR 95k:55012
  • [BL2] J. Bernstein, V. Lunts, Localization for derived categories of $(\mathfrak g, K)$-modules, J. Amer. Math. Soc. 8 (1995), no. 4, pp 819-856. MR 95m:17004
  • [Bj] J. Bjork, Analytic $\mathcal D$ modules and applications., 247 Kluwar Academic Press, Netherlands (1193). MR 95f:37014
  • [Bo] A. Borel et al, Algebraic $\mathcal D$-modules, Perspectives in Math., Academic Press, San Diego (1987). MR 89g:32014
  • [Bo2] A. Borel et al, Intersection cohomology, Progress in Math. 50 Academic Press, Birkhäuser, Boston (1984). MR 788 176
  • [Bog] A. Boggess, CR Manifolds and the tangential Cauchy-Riemann complex, Studies in Advanced Math., CRC Press, Boca Raton (1991). MR 94e:32035
  • [EP] J. Eschmeier, M. Putiner, Spectral decomposition and analytic sheaves, Clarendon press, Oxford (1996). MR 98h:47002
  • [GPR] H. Grauert, Th. Perternell, R. Remmert, Several Complex Variables VII , EMS 74 Springer-Verlag, Berlin (1994). MR 96k:32001
  • [GR] R. Gunning, H. Rossi, Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, N.J. (1965). MR 31:4927
  • [HT] H. Hecht, J. Taylor, Analytic localization of group representations, Adv. Math., 79 (1990), pp. 139-212. MR 91c:22027
  • [K] M. Kashiwara, Character, character cycle, fixed point theorem and group representations, Adv. Stud. Pure Math., 14 (1988) pp. 369-378. MR 91h:22029
  • [K2] M. Kashiwara, Representation theory and D-modules on flag manifolds., orbites unipotentes et représentations, III, Asterisque, 173-174 (1989) pp. 55-109. MR 90k:17029
  • [KSc] M. Kashiwara, P. Schapira, Sheaves on manifolds, Springer-Verlag, Berlin, (1990). MR 95g:58222
  • [KSd] M. Kashiwara, W. Schmid, Quasi-equivariant $\mathcal D$-modules, equivariant derived category and representations of reductive Lie groups, RIMS, 980 (1994) pp. 1-26. MR 96e:22031
  • [M] Z. Mebkhout, Une équivalence de catégories et une autre équivalence de catégories Comp. Math. 51 (1984) pp. 55-69. MR 85k:58073
  • [M2] Z. Mebkhout, Le formalism des six opérations de Grothendieck pour les coeficients de de Rham, in Séminaire de Plans-sur-Bex, mars 1984, Travaux en Cours (1986), Hermann, Paris. MR 90m:32026
  • [MUV] I. Mirkovic, T. Uzawa, K. Vilonen, Matsuki correspondence for sheaves, Invent. Math. 109 (1992) pp. 231-245. MR 93k:22011
  • [S] W. Schmid, Homogeneous complex manifolds and representations of semisimple Lie groups., Mathematical Surveys and Monographs 31 (1989) pp. 223-286. MR 90i:22025
  • [S2] W. Schmid, Boundary value problems for group invariant differential equations, in Elie Cartan it les Mathematiques d'Aujourd'hui, Asterisque numero hors serie, (1985) pp. 311-322. MR 87h:22018
  • [Sch] H. Schaeffer, Topological Vector Spaces, Macmillan, New York (1966).
  • [Sm] L. Smithies, Equivariant analytic localization of group representations, Mem. Amer. Math. Soc. (to appear).
  • [SW] W. Schmid, J. Wolf, Geometric quantization and derived functor modules for semisimple Lie groups, J. Funct. Anal. 90 (1990), pp. 48-112. MR 91j:72012
  • [T] J. Taylor, Homology and cohomology for topological algebras, Adv. Math. 9 (1972), pp. 137-182. MR 48:6966
  • [V] D. Vogan, Representations of Real Reductive Lie Groups, Birkhäuser, Boston (1981). MR 83c:22022

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 22E46, 18D99, 55N91

Retrieve articles in all journals with MSC (2000): 22E46, 18D99, 55N91

Additional Information

Laura Smithies
Affiliation: Department of Mathematics and Computer Science, Kent State University, Kent, Ohio 44242

Joseph L. Taylor
Affiliation: Department of Mathematics, University of Utah, Salt Lake City, Utah 84112

Keywords: Localization, constructible sheaves, equivariant derived category
Received by editor(s): July 21, 1999
Published electronically: September 12, 2000
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society