Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165



Spherical functions on mixed symmetric spaces

Authors: Bernhard Krötz, Karl-Hermann Neeb and Gestur Ólafsson
Journal: Represent. Theory 5 (2001), 43-92
MSC (2000): Primary 22E30, 22E45, 43A85
Published electronically: April 23, 2001
MathSciNet review: 1826428
Full-text PDF

Abstract | References | Similar Articles | Additional Information


In this article we compute the spherical functions which are associated to hyperbolically ordered symmetric spaces $H\backslash G$. These spaces are usually not semisimple; one prominent example is given by $H\backslash G= ({\mathbb R}^n\rtimes {\mathrm{Gl}}(n,{\mathbb R}))\backslash (H_n\rtimes{\mathrm{Sp}} (n,{\mathbb R}))$ with $H_n$ the $(2n+1)$-dimensional Heisenberg group.

References [Enhancements On Off] (What's this?)

  • [AÓS00] N. B. Andersen, G. Ólafsson, and H. Schlichtkrull, On the inversion of the Laplace and Abel transforms for causal symmetric spaces, preprint, 2000.
  • [Fo89] G. Folland, ``Harmonic Analysis in Phase Space,'' Princeton University Press, 1989. MR 92k:22017
  • [FHÓ94] J. Faraut, J. Hilgert, and G. Ólafsson, Spherical functions on ordered symmetric spaces, Ann. Inst. Fourier 44 (1994), 927-965. MR 96a:43012
  • [FOS83] J. Fröhlich, K. Osterwalder, and E. Seiler, On virtual representations of symmetric spaces and their analytic continuation, Ann. of Math. 118 (1983), 461-489. MR 85j:22024
  • [GaVa88] R. Gangolli and V.S. Varadarajan, ``Harmonic Analysis of Spherical Functions on Real Reductive Groups,'' Ergebniss der Mathematik 101, Springer, 1988. MR 89m:22015
  • [HS94] G. Heckman and H. Schlichtkrull, ``Harmonic Analysis and Special Functions on Symmetric Spaces,'' Perspectives in Mathematics, 16, Academic Press, San Diego, CA, 1994. MR 96j:22019
  • [Hel78] S. Helgason, ``Differential geometry, Lie groups, and symmetric spaces,'' Acad. Press, London, 1978. MR 80k:53081
  • [He184] -, ``Groups and Geometric Analysis,'' Acad. Press, London, 1984. MR 86c:22017
  • [HiKr99a] J. Hilgert and B. Krötz, The Plancherel Theorem for invariant Hilbert spaces, Math. Z., to appear.
  • [HiKr99b] -, Representations, characters and spherical functions associated to causal symmetric spaces, Journal of Funct. Anal. 169 (1999), 357-390, MR 2001d:22010
  • [HiKr99c] -, Weighted Bergman spaces associated to causal symmetric spaces, Manuscripta Math. 99 (1999), 151-180. MR 2000g:22019
  • [HiNe96] J. Hilgert and K.-H. Neeb, Spherical functions on Ol'shanskii spaces, Journal of Funct. Anal., 142:2 (1996), 446-493. MR 98c:43015
  • [HiNe97] -, Positive Definite Spherical Functions on Ol'shanskii Domains, Transactions of the Amer. Math. Soc. 352 (2000), 1345-1380. MR 2000j:22016
  • [HiÓl96] J. Hilgert and G. Ólafsson, ``Causal Symmetric Spaces. Geometry and Harmonic Analysis, Acad. Press, 1997. MR 97m:43006
  • [HÓØ91] J. Hilgert, G. Ólafsson and B. Ørsted, Hardy spaces on affine symmetric spaces, J. Reine Angew. Math. 415 (1991), 189-218. MR 92h:22030
  • [Jo87] P.E.T. Jorgensen, Analytic continuation of local representations of symmetric spaces, J. Funct. Anal. 70 (1987), 304-322. MR 88d:22021
  • [JoÓl98] P.E.T. Jorgensen and G. Ólafsson, Unitary representations of Lie groups with reflection symmetry, J. Funct. Anal. 158 (1998), 26-88. MR 99m:22013
  • [JoÓl00] -, Unitary representations and Osterwalder-Schrader Duality. The Mathematical Legacy of Harish-Chandra. A Celebration of Representation Theory and Harmonic Analysis. PSPM, 98, 2000, 333-401. CMP 2000:16
  • [Kn96] A. Knapp, ``Lie Groups Beyond an Introduction,'' Progress in Mathematics 140, Birkhäuser, Boston, Basel, Berlin, 1996. MR 98b:22002
  • [Kr98] B. Krötz, On Hardy and Bergman spaces on complex Ol'shanski semigroups, Math. Ann. 312 (1998), 13-52. MR 99h:22009
  • [Kr99] -, The Plancherel theorem for biinvariant Hilbert spaces, Publ. RIMS, Kyoto Univ., 35:1 (1999), 91-122, CMP 99:10
  • [Kr01] -, Formal dimension for semisimple symmetric spaces, Comp. Math. 125, 155-191 (2001).
  • [KrNe96] B. Krötz and K.-H. Neeb, On hyperbolic cones and mixed symmetric spaces, Journal of Lie Theory 6:1 (1996), 69-146. MR 97k:17007
  • [KNÓ97] B. Krötz, K.-H. Neeb, and G. Ólafsson, Spherical Representations and Mixed Symmetric Spaces, Represent. Theory 1 (1997), 424-461. MR 99a:22031
  • [KrÓl99] B. Krötz and G. Ólafsson, The c-function for non-compactly causal symmetric spaces, submitted.
  • [La94] J. Lawson, Polar and Ol'shanskii decompositions, J. Reine Angew. Math. 448 (1994), 191-219. MR 95a:22007
  • [Lo69] O. Loos, ``Symmetric Spaces I: General Theory," Benjamin, New York, Amsterdam, 1969. MR 39:365a
  • [Ne94] K.-H. Neeb, A convexity theorem for semisimple symmetric spaces, Pacific Journal of Math. 162:2 (1994), 305-349; Correction, Pacific Journal of Math. 166:2, 401. MR 95b:22016; MR 95m:22002
  • [Ne96] -, Coherent states, holomorphic extensions, and highest weight representations, Pac. J. Math. 174:2 (1996), 497-542. MR 97k:22018
  • [Ne97a] -, A general non-linear convexity theorem, Forum Math. 9:5 (1997), 613-640. MR 98k:22030
  • [Ne97b] -, Square integrable highest weight representations, Glasgow Math. J. 39:3 (1997) 295-321. MR 99a:22021
  • [Ne98a] -, On the complex geometry of invariant domains in complexified symmetric spaces, Ann. Inst. Fourier 49:1 (1999), 177-225. MR 2000i:32040
  • [Ne98b] -, Operator valued positive definite kernels on tubes, Monatshefte für Math. 126:2 (1998), 125-160. MR 2000c:22002
  • [Ne99] -, ``Holomorphy and Convexity in Lie Theory,'' Expositions in Mathematics 28, de Gruyter, 2000. CMP 2000:08
  • [No01] T. Nomura, Invariant Berezin Transform. In: Ed M.A. Picardello: Harmonic analysis and integral geometry. Chapman & Hall/CRC Research Notes in Mathematics 422, 2001. CMP 2001:05
  • [Ól87] G. Ólafsson, Fourier and Poisson transformation associated to a semisimple symmetric space, Invent. math. 90 (1987), 605-629. MR 89d:43011
  • [Ól97] -, Spherical Functions and Spherical Laplace Transform on Ordered Symmetric Space,$^{\sim}$preprint.
  • [Ól98] -, Open problems in harmonic analysis on causal symmetric spaces, In: Positivity in Lie Theory: Open Problems, Ed.: Hilgert/Lawson/Neeb/Vinberg. Walter de Gruyter, Berlin-New York. 1998, 249-270. MR 99h:43021
  • [Ól00] -, Analytic continuation in Representation Theory and Harmonic Analysis. In: Global Analysis and Harmonic Analysis (J. P. Bourguignon, T. Branson, and O. Hijazi, eds.), Seminaires et Congres 4 (2000) 201-233.
  • [ÓlPa00] G. Ólafsson and A. Pasquale, On the meromorphic extension of the spherical functions on noncompactly causal symmetric spaces. Preprint, 2000.
  • [ÓØ91] G. Ólafsson and B. Ørsted, The holomorphic discrete series of an affine symmetric space and representations with reproducing kernels Trans. Amer. Math. Soc. 326 (1991), 385-405. MR 91j:22014
  • [Sc86] R. Schrader, Reflection positivity for the complementary series of $\operatorname{SU}\nolimits (2n,{\mathbb C})$, Publ. Res. Inst. Math. Sci. 22 (1986), 119-141. MR 87h:81111
  • [Sh90] G. Shimura, Invariant differential operators on hermitian symmetric spaces, Ann of Math. 132 (1990), 237-272. MR 91i:22015
  • [Wa88] N. Wallach, ``Real Reductive Groups I,'' Academic Press, Boston, MA 1988. MR 89i:22029
  • [War72] G. Warner, ``Harmonic analysis on semisimple Lie groups I", Springer-Verlag, Berlin, Heidelberg, New York, 1972. MR 58:16979

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 22E30, 22E45, 43A85

Retrieve articles in all journals with MSC (2000): 22E30, 22E45, 43A85

Additional Information

Bernhard Krötz
Affiliation: Department of Mathematics, The Ohio State University, 231 West 18th Avenue, Columbus, Ohio 43210–1174

Karl-Hermann Neeb
Affiliation: Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstrasse 7, D-64289 Darmstadt, Germany

Gestur Ólafsson
Affiliation: Department of Mathematics, Louisiana State University, Baton Rouge, Louisianna 70803

Received by editor(s): March 29, 2000
Received by editor(s) in revised form: September 26, 2000, and March 20, 2001
Published electronically: April 23, 2001
Additional Notes: The first author was supported by the DFG-project HI 412/5-2 and LSU
The second author was supported by NSF grant DMS-9626541, DMS 0070607, INT 972277, and LEQSF grant (1996-99)-RD-A-12
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society