Weyl modules for classical and quantum affine algebras

Authors:
Vyjayanthi Chari and Andrew Pressley

Journal:
Represent. Theory **5** (2001), 191-223

MSC (2000):
Primary 81R50, 17B67

DOI:
https://doi.org/10.1090/S1088-4165-01-00115-7

Published electronically:
July 5, 2001

MathSciNet review:
1850556

Full-text PDF

Abstract | References | Similar Articles | Additional Information

We introduce and study the notion of a Weyl module for the classical affine algebras, these modules are universal finite-dimensional highest weight modules. We conjecture that the modules are the classical limit of a family of irreducible modules of the quantum affine algebra, and prove the conjecture in the case of . The conjecture implies also that the Weyl modules are the classical limits of the standard modules introduced by Nakajima and further studied by Varagnolo and Vasserot.

**[AK]**T. Akasaka and M. Kashiwara, Finite-dimensional representations of quantum affine algebras,*Publ. Res. Inst. Math. Sci.***33**(1997), no. 5, 839-867. MR**99d:17017****[B]**J. Beck, Braid group action and quantum affine algebras,*Commun. Math. Phys.***165**(1994), 555-568. MR**95i:17011****[BCP]**J. Beck, V. Chari and A. Pressley, An algebraic characterization of the affine canonical basis,*Duke Math. J.***99**(1999), no. 3, 455-487. MR**2000g:17013****[C]**V. Chari, Integrable representations of affine Lie algebras,*Invent. Math***85**(1986), no.2, 317-335. MR**88a:17034****[CP1]**V. Chari and A. Pressley, New unitary representations of loop groups,*Math. Ann.***275**(1986), 87-104. MR**88f:17029****[CP2]**V. Chari and A. Pressley, A new family of irreducible integrable modules for affine Lie algebras,*Math. Ann.***277**(1987), 543-562. MR**88h:17022****[CP3]**V. Chari, and A. Pressley, Quantum affine algebras,*Commun. Math. Phys.***142**(1991), 261-283. MR**93d:17017****[CP4]**V. Chari and A. Pressley,*A Guide to Quantum Groups*, Cambridge University Press, Cambridge, 1994; corrected reprint of the 1994 original. MR**95j:17010**; MR**96h:17014****[CP5]**V. Chari and A. Pressley, Quantum affine algebras and their representations, in Representations of Groups, (Banff, AB, 1994), 59-78, CMS Conf. Proc.**16**, AMS, Providence, RI 1995. MR**96j:17009****[CP6]**V. Chari and A. Pressley, Quantum affine algebras at roots of unity,*Representation Theory***1**(1997), 280-328. MR**98e:17018****[CP7]**V. Chari and A. Pressley, Integrable and Weyl modules for quantum affine , preprint, math. qa/007123.**[Dr1]**V.G. Drinfeld, Hopf Algebras and the quantum Yang-Baxter equation,*Sov. Math. Dokl.***32**(1985) 254-258.**[Dr2]**V.G. Drinfeld, A new realization of Yangians and quantum affine algebras.*Soviet Math. Dokl.***36**(1988), 212-216. MR**88j:17020****[G]**H. Garland, The arithmetic theory of loop algebras,*J. Algebra***53**(1978), 480-551. MR**80a:17012****[GV]**V. Ginzburg and E. Vasserot, Langlands reciprocity for affine quantum groups of type ,*Int. Math. Res. Not.***3**(1993), 67-85. MR**94j:17011****[J]**N. Jing, On Drinfeld realization of quantum affine algebras. The Monster and Lie algebras (Columbus, OH, 1996), pp. 195-206, Ohio State Univ. Math. Res. Inst. Publ.,**7**, de Gruyter, Berlin, 1998. MR**99j:17021****[FM]**E. Frenkel and E. Mukhin, Combinatorics of -characters of finite-dimensional representations of quantum affine algebras, Comm. Math. Phys.**216**(2001), 23-57.**[FR]**E. Frenkel and N. Reshetikhin, The -characters of representations of quantum affine algebras and deformations of -algebras,*Contemp. Math.***248**(1999). CMP**2000:11****[K]**M. Kashiwara, Crystal bases of the modified quantized enveloping algebra,*Duke Math. J.***73**(1994), 383-413. MR**95c:17024****[K2]**M. Kashiwara, On level zero representations of quantized affine algebras, math.qa/0010293.**[KS]**D. Kazhdan and Y. Soibelman, Representations of quantum affine algebras,*Selecta Math. (NS)***1**(1995), 537-595. MR**96m:17031****[L1]**G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras,*Adv. Math.***70**(1988), 237-249. MR**89k:17029****[L2]**G. Lusztig,*Introduction to quantum groups*, Progress in Mathematics**110**, Birkhäuser, Boston, 1993. MR**94m:17016****[N]**H. Nakajima, -analogue of the -characters of finite-dimensional representations of quantum affine algebras, math.QA/0009231.**[VV]**M. Varagnolo and E. Vasserot, Standard modules for quantum affine algebras, math.qa/0006084.

Retrieve articles in *Representation Theory of the American Mathematical Society*
with MSC (2000):
81R50,
17B67

Retrieve articles in all journals with MSC (2000): 81R50, 17B67

Additional Information

**Vyjayanthi Chari**

Affiliation:
Department of Mathematics, University of California, Riverside, California 92521

Email:
chari@math.ucr.edu

**Andrew Pressley**

Affiliation:
Department of Mathematics, Kings College, London, WC 2R, 2LS, England, United Kingdom

Email:
anp@mth.kcl.ac.uk

DOI:
https://doi.org/10.1090/S1088-4165-01-00115-7

Received by editor(s):
August 23, 2000

Published electronically:
July 5, 2001

Article copyright:
© Copyright 2001
American Mathematical Society