The Hom-spaces between projective functors
Author:
Erik Backelin
Journal:
Represent. Theory 5 (2001), 267-283
MSC (2000):
Primary 17B10, 18G15, 17B20
DOI:
https://doi.org/10.1090/S1088-4165-01-00099-1
Published electronically:
September 10, 2001
MathSciNet review:
1857082
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The category of projective functors on a block of the category of Bernstein, Gelfand and Gelfand, over a complex semisimple Lie algebra
, embeds to a corresponding block of the category
. In this paper we give a nice description of the object
in
corresponding to the identity functor; we show that
is isomorphic to the module of invariants, under the diagonal action of the center
of the universal enveloping algebra of
, in the so-called anti-dominant projective.
As an application we use Soergel's theory about modules over the coinvariant algebra , of the Weyl group, to describe the space of homomorphisms of two projective functors
and
. We show that there exists a natural
-bimodule structure on
such that this space becomes free as a left (and right)
-module and that evaluation induces a canonical isomorphism
, where
denotes the dominant Verma module in the block and
is the complex numbers.
- [Bac]
E. Backelin, Koszul duality for singular and parabolic category
, Representation theory (www.ams.org/ert) 3, (1999) 1-31. MR 2001c:17034
- [Bass] H. Bass, Algebraic K-theory, Benjamin, 1968. MR 40:2736
- [BB]
A. Beilinson and J. Bernstein, Localisation de
-modules, C. R. Acad. Sc. Paris, 292 (Série I) (1981) 15-18. MR 82k:14015
- [BeilGin]
A. Beilinson and V. Ginzburg, Wall-crossing functors and
-modules, Representation theory (www.ams.org/ert) 3, (1999) 1-31. MR 2000d:17007
- [BGS] A. Beilinson, V. Ginzburg and W. Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9, (1996) 473-527. MR 96k:17010
- [B] J. Bernstein, Trace in categories, in: Proceedings of the Dixmier Colloquium, Birkhäuser, Progress in Math. 92, Boston, 1990, 417-423. MR 92d:17010
- [BG] J. Bernstein and S.I. Gelfand, Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras, Compositio Math. 41 (1981), 245-285. MR 82c:17003
- [BGG]
J. Bernstein, I.M. Gelfand and S.I. Gelfand, On a category of
-modules, Functional Anal. Appl. 10 (1976), 87-92.
- [D] P. Deligne, Catégories tannakiennes, The Grothendieck Festschrift, Vol II, Progr. Math. 87, Birkhäuser Boston (1990), 111-195. MR 92d:14002
- [Jan] J. C. Jantzen, Einhüllende Algebren halbeinfacher Lie-Algebren, Springer-Verlag (1983). MR 86c:17011
- [KL] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke Algebras, Inventiones Math. 53, (1979) 165-184. MR 81j:20066
- [BM]
B. Müller, Projective Funktoren auf der parabolischen Kategorie
, Diplomarbeit (1999), Mathematisches Fakultät, Albert-Ludwigs-Universität Freiburg i. Breisgau, unpublished.
- [S]
W. Soergel, Kategorie
, Perverse Garben und Moduln über der Koinvarianten Algebra zur Weylgruppe, J. Amer. Math. Soc. 3 (1990), 421-444. MR 91e:17007
- [S2] W. Soergel, Harish-Chandra bimodules, J. Reine. Angew. Math. 429 (1992), 49-74. MR 94b:17011
Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 17B10, 18G15, 17B20
Retrieve articles in all journals with MSC (2000): 17B10, 18G15, 17B20
Additional Information
Erik Backelin
Affiliation:
Sorselevägen 17, 16267 Vällingby, Stockholm, Sweden
Email:
erikb@matematik.su.se
DOI:
https://doi.org/10.1090/S1088-4165-01-00099-1
Received by editor(s):
May 16, 2000
Received by editor(s) in revised form:
May 2, 2001
Published electronically:
September 10, 2001
Article copyright:
© Copyright 2001
American Mathematical Society