The closure diagram for nilpotent orbits of the split real form of

Author:
Dragomir Z. Ðokovic

Journal:
Represent. Theory **5** (2001), 284-316

MSC (2000):
Primary 05B15, 05B20; Secondary 05B05

DOI:
https://doi.org/10.1090/S1088-4165-01-00124-8

Published electronically:
October 3, 2001

MathSciNet review:
1857083

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let and be adjoint nilpotent orbits in a real semisimple Lie algebra. Write if is contained in the closure of This defines a partial order on the set of such orbits, known as the closure ordering. We determine this order for the split real form EV of

**1.**D. Barbasch and M.R. Sepanski,*Closure ordering and the Kostant-Sekiguchi correspondence*, Proc. Amer. Math. Soc.**126**(1998), 311-317. MR**98c:22004****2.**W.M. Beynon and N. Spaltenstein,*Green functions of finite Chevalley groups of type*, J. Algebra**88**(1984), 584-614. MR**85k:20136****3.**N. Bourbaki, Groupes et algèbres de Lie, Chap. 7 et 8, Hermann, Paris, 1975. MR**56:12077****4.**B.W. Char, K.O. Geddes, G.H. Gonnet, B.L. Leong, M.B. Monagan, and S.M. Watt,*Maple V Language reference Manual*, Springer-Verlag, New York, 1991, xv+267 pp.**5.**D.H. Collingwood and W.M. McGovern,*Nilpotent Orbits in Semisimple Lie Algebras*, Van Nostrand Reinhold, New York, 1993. MR**94j:17001****6.**D.Z. Dokovic,*Classification of nilpotent elements in simple exceptional real Lie algebras of inner type and description of their centralizers*, J. Algebra**112**(1988), 503-524. MR**89b:17010****7.**-,*Explicit Cayley triples in real forms of*, Pacific J. Math.**191**(1999), 1-23. MR**2001c:22012****8.**-,*The closure diagrams for nilpotent orbits of real forms of**and*, J. Lie Theory**10**(2000), 491-510. MR**2001i:14061****9.**-,*The closure diagrams for nilpotent orbits of real forms of*, J. Lie Theory**11**(2001), 381-413.**10.**-*The closure diagrams for nilpotent orbits of the real forms EVI and EVII of*, Represent. Theory**5**(2001), 17-42. CMP**2001:11****11.**-,*The closure diagram for nilpotent orbits of the real form EIX of*, Asian J. Math. (to appear), 23 pp.**12.**K. Mizuno,*The conjugate classes of unipotent elements of the Chevalley groups**and*Tokyo J. Math.**3**(1980), 391-461. MR**82m:20046****13.**M. Sato and T. Kimura,*A classification of irreducible prehomogeneous vector spaces and their relative invariants*, Nagoya Math. J.**65**(1977), 1-155. MR**55:3341****14.**M. Sato,*Theory of prehomogeneous vector spaces*(*algebraic part*), the English translation of Sato's lecture from Shintani's notes. Notes by Takuro Shintani. Translated from the Japanese by Masakazu Muro, Nagoya Math. J.**120**(1990), 1-34. MR**92c:32039****15.**J. Tits,*Normalisateurs de tores. I. Groupes de Coxeter étendus*, J. Algebra**4**(1966), 96-116. MR**34:5942****16.**M.A.A. van Leeuwen, A.M. Cohen, and B. Lisser, ``LiE'', a software package for Lie group theoretic computations, Computer Algebra Group of CWI, Amsterdam, The Netherlands.

Retrieve articles in *Representation Theory of the American Mathematical Society*
with MSC (2000):
05B15,
05B20,
05B05

Retrieve articles in all journals with MSC (2000): 05B15, 05B20, 05B05

Additional Information

**Dragomir Z. Ðokovic**

Affiliation:
Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada

Email:
djokovic@uwaterloo.ca

DOI:
https://doi.org/10.1090/S1088-4165-01-00124-8

Received by editor(s):
March 9, 2001

Received by editor(s) in revised form:
August 17, 2001

Published electronically:
October 3, 2001

Additional Notes:
Supported in part by the NSERC Grant A-5285

Article copyright:
© Copyright 2001
American Mathematical Society