Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

The closure diagram for nilpotent orbits of the split real form of ${E_7}$


Author: Dragomir Z. Ðokovic
Journal: Represent. Theory 5 (2001), 284-316
MSC (2000): Primary 05B15, 05B20; Secondary 05B05
DOI: https://doi.org/10.1090/S1088-4165-01-00124-8
Published electronically: October 3, 2001
MathSciNet review: 1857083
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\mathcal{O}_1$ and $\mathcal{O}_2$ be adjoint nilpotent orbits in a real semisimple Lie algebra. Write $\mathcal{O}_1\geq\mathcal{O}_2$ if $\mathcal{O}_2$ is contained in the closure of $\mathcal{O}_1.$ This defines a partial order on the set of such orbits, known as the closure ordering. We determine this order for the split real form EV of $E_7.$


References [Enhancements On Off] (What's this?)

  • 1. D. Barbasch and M.R. Sepanski, Closure ordering and the Kostant-Sekiguchi correspondence, Proc. Amer. Math. Soc. 126 (1998), 311-317. MR 98c:22004
  • 2. W.M. Beynon and N. Spaltenstein, Green functions of finite Chevalley groups of type $E_n(n=6,7,8)$, J. Algebra 88 (1984), 584-614. MR 85k:20136
  • 3. N. Bourbaki, Groupes et algèbres de Lie, Chap. 7 et 8, Hermann, Paris, 1975. MR 56:12077
  • 4. B.W. Char, K.O. Geddes, G.H. Gonnet, B.L. Leong, M.B. Monagan, and S.M. Watt, Maple V Language reference Manual, Springer-Verlag, New York, 1991, xv+267 pp.
  • 5. D.H. Collingwood and W.M. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold, New York, 1993. MR 94j:17001
  • 6. D.Z. Dokovic, Classification of nilpotent elements in simple exceptional real Lie algebras of inner type and description of their centralizers, J. Algebra 112 (1988), 503-524. MR 89b:17010
  • 7. -, Explicit Cayley triples in real forms of $E_7$, Pacific J. Math. 191 (1999), 1-23. MR 2001c:22012
  • 8. -, The closure diagrams for nilpotent orbits of real forms of $F_4$and $G_2$, J. Lie Theory 10 (2000), 491-510. MR 2001i:14061
  • 9. -, The closure diagrams for nilpotent orbits of real forms of $E_6$, J. Lie Theory 11 (2001), 381-413.
  • 10. - The closure diagrams for nilpotent orbits of the real forms EVI and EVII of $E_7$, Represent. Theory 5 (2001), 17-42. CMP 2001:11
  • 11. -, The closure diagram for nilpotent orbits of the real form EIX of $E_8$, Asian J. Math. (to appear), 23 pp.
  • 12. K. Mizuno, The conjugate classes of unipotent elements of the Chevalley groups $E_7$ and $E_8,$ Tokyo J. Math. 3 (1980), 391-461. MR 82m:20046
  • 13. M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1-155. MR 55:3341
  • 14. M. Sato, Theory of prehomogeneous vector spaces (algebraic part), the English translation of Sato's lecture from Shintani's notes. Notes by Takuro Shintani. Translated from the Japanese by Masakazu Muro, Nagoya Math. J. 120 (1990), 1-34. MR 92c:32039
  • 15. J. Tits, Normalisateurs de tores. I. Groupes de Coxeter étendus, J. Algebra 4 (1966), 96-116. MR 34:5942
  • 16. M.A.A. van Leeuwen, A.M. Cohen, and B. Lisser, ``LiE'', a software package for Lie group theoretic computations, Computer Algebra Group of CWI, Amsterdam, The Netherlands.

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 05B15, 05B20, 05B05

Retrieve articles in all journals with MSC (2000): 05B15, 05B20, 05B05


Additional Information

Dragomir Z. Ðokovic
Affiliation: Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
Email: djokovic@uwaterloo.ca

DOI: https://doi.org/10.1090/S1088-4165-01-00124-8
Received by editor(s): March 9, 2001
Received by editor(s) in revised form: August 17, 2001
Published electronically: October 3, 2001
Additional Notes: Supported in part by the NSERC Grant A-5285
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society