Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

Hecke-Clifford superalgebras, crystals of type $A_{2\ell}^{(2)}$ and modular branching rules for $\widehat{S}_n$


Authors: Jonathan Brundan and Alexander Kleshchev
Journal: Represent. Theory 5 (2001), 317-403
MSC (2000): Primary 17B67, 20C08, 20C20, 17B10, 17B37
DOI: https://doi.org/10.1090/S1088-4165-01-00123-6
Published electronically: October 24, 2001
MathSciNet review: 1870595
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is concerned with the modular representation theory of the affine Hecke-Clifford superalgebra, the cyclotomic Hecke-Clifford superalgebras, and projective representations of the symmetric group. Our approach exploits crystal graphs of affine Kac-Moody algebras.


References [Enhancements On Off] (What's this?)

  • [AF] F. Anderson and K. Fuller, Rings and categories of modules, Springer-Verlag, 1974. MR 54:5281
  • [A$_1$] S. Ariki, On the decomposition numbers of the Hecke algebra of type $G(m,1,n)$, J. Math. Kyoto Univ. 36 (1996), 789-808. MR 98h:20012
  • [A$_2$] S. Ariki, On the classification of simple modules for cyclotomic Hecke algebras of type $G(m,1,n)$ and Kleshchev multipartitions, to appear in Osaka J. Math..
  • [AK] S. Ariki and K. Koike, A Hecke algebra of $({Z}/r{Z})\wr{S}\sb n$ and construction of its irreducible representations, Advances Math. 106 (1994), 216-243. MR 95h:20006
  • [AM] S. Ariki and A. Mathas, The number of simple modules of the Hecke algebras of type $G(r,1,n)$, Math. Z. 233 (2000), 601-623. MR 2001e:20007
  • [Be] G. Bergman, The diamond lemma for ring theory, Advances Math. 29 (1978), 178-218. MR 81b:16001
  • [BZ] I. Bernstein and A. Zelevinsky, Induced representations of reductive $p$-adic groups, I, Ann. Sci. Ecole Norm. Sup. 10 (1977), 441-472. MR 58:28310
  • [B] J. Brundan, Modular branching rules and the Mullineux map for Hecke algebras of type $\mathbf A$, Proc. London Math. Soc. 77 (1998), 551-581. MR 2000d:20007
  • [BK$_1$] J. Brundan and A. Kleshchev, Translation functors for general linear and symmetric groups, Proc. London Math. Soc. 80 (2000), 75-106. MR 2000j:20080
  • [BK$_2$] J. Brundan and A. Kleshchev, Projective representations of the symmetric group via Sergeev duality, to appear in Math. Z..
  • [DJ] R. Dipper and G. James, Representations of Hecke algebras of general linear groups. Proc. London Math. Soc. 52 (1986), 20-52. MR 88b:20065
  • [G$_1$] I. Grojnowski, Affine $\widehat{\mathfrak{sl}}_p$ controls the modular representation theory of the symmetric group and related Hecke algebras, preprint, 1999.
  • [G$_2$] I. Grojnowski, Blocks of the cyclotomic Hecke algebra, preprint, 1999.
  • [GV] I. Grojnowski and M. Vazirani, Strong multiplicity one theorem for affine Hecke algebras of type $A$, Transf. Groups., to appear.
  • [H] J. F. Humphreys, Blocks of projective representations of the symmetric groups, J. London Math. Soc. 33 (1986), 441-452. MR 87k:20027
  • [JS] J. C. Jantzen and G. M. Seitz, On the representation theory of the symmetric groups, Proc. London Math. Soc. 65 (1992), 475-504. MR 93k:20026
  • [JN] A. Jones and M. Nazarov, Affine Sergeev algebra and $q$-analogues of the Young symmetrizers for projective representations of the symmetric group, Proc. London Math. Soc. 78 (1999), 481-512. MR 2000a:20021
  • [Kc] V. Kac, Infinite-dimensional Lie algebras, Cambridge University Press, third edition, 1990. MR 92k:17038
  • [Kg] S.-J. Kang, Crystal bases for quantum affine algebras and combinatorics of Young walls, preprint, Seoul National University, 2000.
  • [Ka] M. Kashiwara, ``On crystal bases'', in: Representations of groups (Banff 1994), CMS Conf. Proc. 16 (1995), 155-197. MR 97a:17016
  • [KS] M. Kashiwara and Y. Saito, Geometric construction of crystal bases, Duke Math. J. 89 (1997), 9-36. MR 99e:17025
  • [Kt] S. Kato, Irreducibility of principal series representations for Hecke algebras of affine type, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 929-943. MR 84b:22029
  • [K$_1$] A. Kleshchev, Branching rules for modular representations of symmetric groups II, J. Reine Angew. Math. 459 (1995), 163-212. MR 96m:20019b
  • [K$_2$] A. Kleshchev, Branching rules for modular representations of symmetric groups III: some corollaries and a problem of Mullineux, J. London Math. Soc. 54 (1996), 25-38. MR 96m:20019c
  • [K$_3$] A. Kleshchev, Branching rules for modular representations of symmetric groups IV, J. Algebra 201 (1998), 547-572. MR 99d:20019
  • [K$_4$] A. Kleshchev, On decomposition numbers and branching coefficients for symmetric and special linear groups, Proc. London Math. Soc. 75 (1997), 497-558. MR 98g:20026
  • [LLT] A. Lascoux, B. Leclerc and J.-Y. Thibon, Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Comm. Math. Phys. 181 (1996), 205-263. MR 97k:17019
  • [LT$_1$] B. Leclerc and J.-Y. Thibon, Canonical bases of $q$-deformed Fock spaces, Internat. Math. Res. Notices 9 (1996), 447-456. MR 97h:17023
  • [LT$_2$] B. Leclerc and J.-Y. Thibon, $q$-Deformed Fock spaces and modular representations of spin symmetric groups, J. Phys. A 30 (1997), 6163-6176. MR 99c:17029
  • [Le] D.A. Leites, Introduction to the theory of supermanifolds, Russian Math. Surveys 35 (1980), 1-64.
  • [ML] S. MacLane, Categories for the working mathematician, Graduate Texts in Mathematics 5, Springer-Verlag, 1971. MR 50:7275
  • [Man] Yu I. Manin, Gauge field theory and complex geometry, Grundlehren der Mathematischen Wissenschaften 289, second edition, Springer, 1997. MR 99e:32001
  • [MM] K. Misra and T. Miwa, Crystal base for the basic representation of $U\sb q(\mathfrak{sl}(n))$, Comm. Math. Phys. 134 (1990), 79-88. MR 91j:17021
  • [Mo] A.O. Morris, The spin representations of the symmetric group, Canad. J. Math. 17 (1965), 543-549. MR 31:240 involving shifted Young diagrams, Math. Proc. Camb. Phil. Soc. 99 (1986), 23-31.
  • [N] M. Nazarov, Young's symmetrizers for projective representations of the symmetric group, Advances Math. 127 (1997), 190-257. MR 98m:20019
  • [OV] A. Okounkov and A. Vershik, A new approach to representation theory of symmetric groups. Selecta Math. (N.S.) 2 (1996), 581-605. MR 99g:20024
  • [O] G. Olshanski, Quantized universal enveloping superalgebra of type $Q$ and a super-extension of the Hecke algebra, Lett. Math. Phys. 24 (1992), 93-102. MR 93i:17004
  • [Sch] O. Schiffmann, The Hall algebra of a cyclic quiver and canonical bases of Fock spaces, Internat. Math. Res. Notices 8 (2000), 413-440. MR 2001g:16032
  • [S$_1$] A. N. Sergeev, Tensor algebra of the identity representation as a module over the Lie superalgebras $GL(n,m)$ and $Q(n)$, Math. USSR Sbornik 51 (1985), 419-427. MR 2000j:20021
  • [S$_2$] A. N. Sergeev, The Howe duality and the projective representations of symmetric groups, Represent. Theory 3 (1999), 416-434. MR 2001c:17029
  • [VV] M. Varagnolo and E. Vasserot, On the decomposition matrices of the quantized Schur algebra, Duke Math. J. 100 (1999), 267-297.
  • [V$_1$] M. Vazirani, Irreducible modules over the affine Hecke algebra: a strong multiplicity one result, Ph.D. thesis, UC Berkeley, 1999.
  • [V$_2$] M. Vazirani, Filtrations on the Mackey decomposition for cyclotomic Hecke algebras, preprint, 1999.
  • [Z$_1$] A. Zelevinsky, Induced representations of reductive $p$-adic groups, II, Ann. Sci. Ecole Norm. Sup. 13 (1980), 165-210. MR 83g:22012
  • [Z$_2$] A. Zelevinsky, Representations of finite classical groups, Lecture Notes in Math. 869, Springer-Verlag, Berlin, 1981. MR 83k:20017

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 17B67, 20C08, 20C20, 17B10, 17B37

Retrieve articles in all journals with MSC (2000): 17B67, 20C08, 20C20, 17B10, 17B37


Additional Information

Jonathan Brundan
Affiliation: Department of Mathematics, University of Oregon, Eugene, Oregon 97403
Email: brundan@darkwing.uoregon.edu

Alexander Kleshchev
Affiliation: Department of Mathematics, University of Oregon, Eugene, Oregon 97403
Email: klesh@math.uoregon.edu

DOI: https://doi.org/10.1090/S1088-4165-01-00123-6
Received by editor(s): March 9, 2001
Received by editor(s) in revised form: August 15, 2001
Published electronically: October 24, 2001
Additional Notes: Both authors were partially supported by the NSF (grant nos DMS-9801442 and DMS-9900134)
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society