Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

   
 
 

 

Virtual transfer factors


Authors: Julia Gordon and Thomas C. Hales
Journal: Represent. Theory 7 (2003), 81-100
MSC (2000): Primary 11F85, 22E50
DOI: https://doi.org/10.1090/S1088-4165-03-00183-3
Published electronically: March 3, 2003
MathSciNet review: 1973368
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Langlands-Shelstad transfer factor is a function defined on some reductive groups over a $p$-adic field. Near the origin of the group, it may be viewed as a function on the Lie algebra. For classical groups, its values have the form $q^c\,{\bf\text{sign}}$, where ${\bf\text{sign}}\in\{-1,0,1\}$, $q$ is the cardinality of the residue field, and $c$ is a rational number. The ${\bf\text{sign}}$ function partitions the Lie algebra into three subsets. This article shows that this partition into three subsets is independent of the $p$-adic field in the following sense. We define three universal objects (virtual sets in the sense of Quine) such that for any $p$-adic field $F$ of sufficiently large residue characteristic, the $F$-points of these three virtual sets form the partition.

The theory of arithmetic motivic integration associates a virtual Chow motive with each of the three virtual sets. The construction in this article achieves the first step in a long program to determine the (still conjectural) virtual Chow motives that control the behavior of orbital integrals.


References [Enhancements On Off] (What's this?)

  • 1. J. Denef, F. Loeser, Definable sets, motives, and $p$-adic integrals, J. Amer. Math. Soc. 14, no. 2, 429-469 (2001). MR 2002k:14033
  • 2. H. B. Enderton, A mathematical introduction to logic. Second edition. Harcourt/Academic Press, Burlington, MA, 2001. MR 2001h:03001
  • 3. M. D. Fried, M. Jarden, Field arithmetic. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 11. Springer-Verlag, Berlin, 1986. MR 89b:12010
  • 4. R. Goodman, N. R. Wallach, Representations and Invariants of the Classical Groups, Encyclopedia of Mathematics and its Applications, 68, Cambridge University Press, 1998. MR 99b:20073
  • 5. N. Jacobson, Basic Algebra I, W.H. Freeman and Co., New York, 1996.
  • 6. T. C. Hales, A Simple Definition of Transfer Factors for Unramified Groups, Contemporary Math., 145 (1993), 109-134. MR 94e:22020
  • 7. T. C. Hales, Can $p$-adic integrals be computed?, math.RT/0205207, to appear.
  • 8. R. Kottwitz, Transfer factors for Lie algebras, Representation Theory 3, (1999) 127-138. MR 2000g:22028
  • 9. J. Oesterlé, Réduction modulo $p^n$ des sous-ensembles analytiques fermés de $\mathbb{Z}_p^N$, Inv. Math. 66 (1982) 325-341. MR 83j:12014
  • 10. J. Pas, Uniform $p$-adic cell decomposition and local zeta functions. J. Reine Angew. Math. 399 (1989), 137-172. MR 91g:11142
  • 11. W. V. O. Quine, Set Theory and its Logic, Harvard University Press, Cambridge, MA, 1969. MR 43:37
  • 12. J.-P. Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. 54 (1981) 323-401. MR 83k:12011
  • 13. G. Takeuti, W. M. Zaring, Introduction to Axiomatic Set Theory. Second edition. Graduate Texts in Mathematics, 1, Springer-Verlag, New York, 1982. MR 85b:03003
  • 14. J.-L. Waldspurger, Intégrales orbitales nilpotentes et endoscopie pour les groupes classiques non ramifiés. Astérisque No. 269 (2001). MR 2002h:22014

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 11F85, 22E50

Retrieve articles in all journals with MSC (2000): 11F85, 22E50


Additional Information

Julia Gordon
Affiliation: The Fields Institute, 222 College St., Toronto, Ontario, M5T 3J1, Canada
Email: julygord@umich.edu

Thomas C. Hales
Affiliation: Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
Email: hales@pitt.edu

DOI: https://doi.org/10.1090/S1088-4165-03-00183-3
Received by editor(s): December 6, 2002
Published electronically: March 3, 2003
Article copyright: © Copyright 2003 Julia Gordon and Thomas C. Hales

American Mathematical Society