Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165



A multiplicative property of quantum flag minors

Author: Ph. Caldero
Journal: Represent. Theory 7 (2003), 164-176
MSC (2000): Primary 17B10
Published electronically: April 17, 2003
MathSciNet review: 1973370
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the multiplicative properties of the quantum dual canonical basis ${\mathcal B}^*$ associated to a semisimple complex Lie group $G$. We provide a subset $D$ of ${\mathcal B}^*$ such that the following property holds: if two elements $b$, $b'$ in ${\mathcal B}^*$ $q$-commute and if one of these elements is in $D$, then the product $bb'$ is in ${\mathcal B}^*$ up to a power of $q$, where $q$ is the quantum parameter. If $G$ is SL$_n$, then $D$ is the set of so-called quantum flag minors and we obtain a generalization of a result of Leclerc, Nazarov and Thibon.

References [Enhancements On Off] (What's this?)

  • [1] A. Berenstein and A. Zelevinsky, String bases for quantum groups of type $A\sb r$, I. M. Gel'fand Seminar, 51-89, Adv. Soviet Math., 16, Part 1, Amer. Math. Soc., Providence, RI, (1993). MR 94g:17019
  • [2] A. Berenstein and A. Zelevinski, Tensor product multiplicities, canonical bases and totally positive varieties, Invent. Math., 143 (2001), 77-128. MR 2002c:17005
  • [3] K. Bongartz, On degenerations and extensions of finite-dimensional modules, Adv. Math., 121, (1996), no. 2, 245-287. MR 98e:16012
  • [4] P. Caldero, Adapted algebras for the Berenstein-Zelevinky conjecture, math.RT/0104165.
  • [5] P. Caldero, On the $q$-commutations in $U\sb q(\mathfrak n)$ at roots of one, J. Algebra, 210, (1998), no. 2, 557-575. MR 99i:17014
  • [6] C. De Concini and V.G. Kac, Representations of quantum groups at roots of 1, Progress in Math., 92, Birkhäuser Boston (1990), 471-506. MR 92g:17012
  • [7] C. De Concini, C. Procesi, Quantum Schubert cells and representations at roots of $1$, Algebraic groups and Lie groups, 127-160, Austral. Math. Soc. Lect. Ser., 9, Cambridge Univ. Press, Cambridge, 1997. MR 99i:20067
  • [8] S. Fomin, A. Zelevinsky, Cluster algebras I: Foundations, math.RT/0104151.
  • [9] M. Kashiwara, On Crystal Bases, Canad. Math. Soc., Conference Proceed., 16, (1995), 155-195. MR 97a:17016
  • [10] B. Leclerc and A. Zelevinsky, Quasicommuting families of quantum Plucker coordinates, Kirillov's seminar on representation theory, 85-108, Amer. Math. Soc. Transl. Ser. 2, 181, (1998). MR 99g:14066
  • [11] B. Leclerc, M. Nazarov and J-Y Thibon, Induced representations of affine Hecke algebras and canonical bases of quantum groups, ArXiv:Math.QA/0011074.
  • [12] B. Leclerc, Imaginary vectors in the dual canonical basis of $U_q(n)$, ArXiv:Math.QA/0202148.
  • [13] S.Z. Levendorskii and Y.S. Soibelman, Some applications of quantum Weyl group, J. Geom. Phys., 7, (1990), 241-254. MR 92g:17106
  • [14] P. Littelmann, A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, Invent. Math., 116, (1994), 329-346. MR 92f:17023
  • [15] P. Littelmann, A plactic algebra for semisimple Lie algebras, Adv. Math. 124 (1996), no. 2, 312-331. MR 98c:17009
  • [16] G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447-498. MR 90m:17023
  • [17] G. Lusztig, Introduction to quantum groups, Progress in Mathematics, 110, Birkhaäuser Boston, Inc., Boston, MA, 1993.MR 94m:17016
  • [18] P. Papi, Convex orderings in affine root systems, J. Algebra 186, (1996), no. 1, 72-91. MR 97m:17028
  • [19] M. Reineke, On the coloured graph structure of Lusztig's canonical basis, Math. Ann., 307, (1997), 705-723. MR 98i:17018
  • [20] M. Reineke, Multiplicative properties of dual canonical bases of quantum groups, J. Alg., 211, (1999), 134-149. MR 99k:17034
  • [21] C.M. Ringel, Hall algebras and quantum groups, Invent. Math., 101, (1990), 583-592. MR 91i:16024
  • [22] C.M. Ringel, PBW-bases of quantum groups, Journal Reine Angew. Math., 470, (1996), 51-88. MR 97d:17009
  • [23] Y. Saito PBW basis of quantized universal enveloping algebras, Publ. Res. Inst. Math. Sci., 30, (1994), 209-232. MR 95e:17021
  • [24] T. Tanisaki, Killing forms, Harish-Chandra isomorphisms, and universal $\mathcal R$-matrices for quantum algebras, in: Infinite analysis, Part A, B (Kyoto, 1991), Adv. Ser. Math. Phys., 16, 941-961, 1992. MR 93k:17040

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 17B10

Retrieve articles in all journals with MSC (2000): 17B10

Additional Information

Ph. Caldero
Affiliation: Institut Girard Desargues, Université Claude Bernard – Lyon 1, 69622 Villeurbanne Cedex, France

Received by editor(s): January 23, 2002
Received by editor(s) in revised form: November 8, 2002, and January 8, 2003
Published electronically: April 17, 2003
Additional Notes: Supported in part by the EC TMR network “Algebraic Lie Representations", contract no. ERB FMTX-CT97-0100
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society