Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

Presenting generalized $q$-Schur algebras


Author: Stephen Doty
Journal: Represent. Theory 7 (2003), 196-213
MSC (2000): Primary 17B37, 16W35, 81R50
DOI: https://doi.org/10.1090/S1088-4165-03-00176-6
Published electronically: May 20, 2003
MathSciNet review: 1990659
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We obtain a presentation by generators and relations for generalized Schur algebras and their quantizations. This extends earlier results obtained in the type $A$ case. The presentation is compatible with Lusztig's modified form ${\overset{\raisebox{-3pt}{$\boldsymbol.$ }}{\mathbf U}}$ of a quantized enveloping algebra. We show that generalized Schur algebras inherit a canonical basis from ${\overset{\raisebox{-3pt}{$\boldsymbol.$ }}{\mathbf U}}$, that this gives them a cellular structure, and thus they are quasihereditary over a field.


References [Enhancements On Off] (What's this?)

  • [BLM] A.A. Beilinson, G. Lusztig, and R. MacPherson, A geometric setting for the quantum deformation of ${\sf GL}_n$, Duke Math. J. 61 (1990), 655-677. MR 91m:17012
  • [DJ1] R. Dipper and G.D. James, The $q$-Schur algebra, Proc. London Math. Soc. 59 (1989), 23-50. MR 90g:16026
  • [DJ2] R. Dipper and G.D. James, $q$-tensor space and $q$-Weyl modules, Trans. Amer. Math. Soc. 327 (1991), 251-282. MR 91m:20061
  • [Do1] S. Donkin, On Schur algebras and related algebras. I. J. Algebra 104 (1986), 310-328. MR 89b:20084a
  • [Do2] S. Donkin, Good filtrations of rational modules for reductive groups, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), 69-80, Proc. Sympos. Pure Math., 47, Part 1, Amer. Math. Soc., Providence, RI, 1987. MR 89f:20048
  • [D] S. Doty, Polynomial representations, algebraic monoids, and Schur algebras of classical type J. Pure Appl. Algebra 123 (1998), 165-199. MR 98j:20057
  • [DG] S. Doty and A. Giaquinto, Presenting Schur algebras, Internat. Math. Research Notices, 2002:36 (2002), 1907-1944.
  • [Du] Jie Du, A note on quantized Weyl reciprocity at roots of unity, Algebra Colloq. 2 (1995), 363-372. MR 96m:17024
  • [GL] J.J. Graham and G.I. Lehrer, Cellular algebras, Invent. Math. 123 (1996), 1-34. MR 97h:20016
  • [Gr] J.A. Green, Polynomial Representations of ${\sf GL}_n$, (Lecture Notes in Math. 830), Springer-Verlag, New York, 1980. MR 83j:20003
  • [RG] R.M. Green, Completions of cellular algebras, Commun. Algebra 27 (1999), 5349-5366. MR 2000i:16065
  • [Ji] M. Jimbo, A $q$-analogue of $U(\mathfrak{gl}(N+1))$, Hecke algebra, and the Yang-Baxter equation, Letters Math. Physics 11 (1986), 247-252. MR 87k:17011
  • [Ja] J.C. Jantzen, Lectures on Quantum Groups, Graduate Studies in Mathematics, 6, Amer. Math. Soc., 1996. MR 96m:17029
  • [KX] S. Koenig and C. Xi, When is a cellular algebra quasihereditary?, Math. Ann. 315 (1999), 281-293. MR 2001h:16007
  • [Lu] G. Lusztig, Introduction to Quantum Groups, Progress in Mathematics, 110, Birkhäuser Boston, 1993. MR 94m:17016
  • [Oe] S. Oehms, Symplektische q-Schur-Algebren [Symplectic $q$-Schur algebras] Dissertation, Universität Stuttgart, Stuttgart, 1997. Berichte aus der Mathematik, Verlag Shaker, Aachen, 1997. MR 2000f:20005

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 17B37, 16W35, 81R50

Retrieve articles in all journals with MSC (2000): 17B37, 16W35, 81R50


Additional Information

Stephen Doty
Affiliation: Department of Mathematics and Statistics, Loyola University Chicago, Chicago, Illinois 60626
Email: doty@math.luc.edu

DOI: https://doi.org/10.1090/S1088-4165-03-00176-6
Keywords: Schur algebras, $q$-Schur algebras, generalized Schur algebras, quantized enveloping algebras
Received by editor(s): August 31, 2002
Published electronically: May 20, 2003
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society