Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

Canonical bases and quiver varieties


Authors: Michela Varagnolo and Eric Vasserot
Journal: Represent. Theory 7 (2003), 227-258
MSC (2000): Primary 17B37; Secondary 16E20
DOI: https://doi.org/10.1090/S1088-4165-03-00154-7
Published electronically: June 27, 2003
MathSciNet review: 1990661
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the existence of canonical bases in the $K$-theory of quiver varieties. This existence was conjectured by Lusztig.


References [Enhancements On Off] (What's this?)

  • 1. Akasaka, T., Kashiwara, M., Finite dimensional representations of quantum affine algebras, Publ. R.I.M.S. 33 (1997), 839-867. MR 99d:17017
  • 2. Beck, J., Braid group action and quantum affine algebras, Commun. Math. Phys. 165 (1994), 555-568. MR 95i:17011
  • 3. Beck, J., Chari, V., Pressley, A., An algebraic characterization of the affine canonical basis, Duke Math. J. 99 (1999), 455-487. MR 2000g:17013
  • 4. Chriss, N., Ginzburg, V., Representation theory and complex geometry, Birkhäuser, Boston-Basel-Berlin, 1997. MR 98i:22021
  • 5. De Concini, C., Lyubashenko, V., Quantum function algebra at roots of 1, Adv. Math. 108 (1994), 205-262. MR 95m:17014
  • 6. Kac, V., Infinite-dimensional Lie algebras, third edition, Cambridge University Press, 1990. MR 92k:17038
  • 7. Kashiwara, M., On crystal bases for $q$-analogue of universal enveloping algebra, Duke Math. J. 63 (1991), 465-516. MR 93b:17045
  • 8. Kashiwara, M., Crystal bases of the modified quantized enveloping algebra, Duke Math. J. 73 (1994), 383-413. MR 95c:17024
  • 9. Kashiwara, M., On level zero representations of quantized affine algebras., QA/0010293.
  • 10. Lusztig, G., On quiver varieties, Adv. Math. 136 (1998), 141-182. MR 2000c:16016
  • 11. Lusztig, G., Canonical bases arising from quantized enveloping algebras, II, Common trends in mathematics and quantum field theories (T. Eguchi et. al., ed.), vol. 102, Progr. Theor. Phys. Suppl., 1990, pp. 175-201. MR 93g:17019
  • 12. Lusztig, G., Finite dimensional Hopf algebras arising from quantized universal enveloping algebras, Journal of the Amer. Math. Soc. 3 (1990), 257-296. MR 91e:17009
  • 13. Lusztig, G., Introduction to quantum groups, Birkhäuser, Boston-Basel-Berlin, 1994. MR 96m:20071
  • 14. Lusztig, G., Bases in equivariant K-theory, Represent. Theory 2 (1998), 298-369. MR 99i:19005
  • 15. Lusztig, G., Quiver varieties and Weyl group actions, Ann. Inst. Fourier 50 (2000), 461-489. MR 2001h:17031
  • 16. Lusztig, G., Remarks on quiver varieties, Duke. Math. J. 105 (2000), 239-265. MR 2002b:20072
  • 17. Levendorskii, S., Soibelman, I., Some applications of quantum Weyl groups, J. Geom. and Phys. 7 (1990), 241-254. MR 92g:17016
  • 18. Maffei, A., A remark on quiver varieties and Weyl groups, AG/0003159.
  • 19. Nakajima, H., Quiver varieties and Kac-Moody algebras, Duke Math. J. 91 (1998), 515-560. MR 99b:17033
  • 20. Nakajima, H., Quiver varieties and finite dimensional representations of quantum affine algebras, Journal of the Amer. Math. Soc. 14 (2000), 145-238. MR 2002i:17023
  • 21. Nakajima, H., Reflection functor for quiver varieties, Preprint (2000).
  • 22. Vasserot, E., Représentations de groupes quantiques et permutations, Ann. Sci. École Norm. Sup. (4) 26 (1993), 747-773. MR 94k:17032
  • 23. Vasserot, E., Affine quantum groups and equivariant $K$-theory, Transformation Groups 3 (1998), 269-299. MR 99j:19007
  • 24. Varagnolo, M., Vasserot, E., Standard modules of quantum affine algebras, Duke Math. J. 111 (2002), 509-533. MR 2003g:17030

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 17B37, 16E20

Retrieve articles in all journals with MSC (2000): 17B37, 16E20


Additional Information

Michela Varagnolo
Affiliation: Département de mathématique, Université de Cergy-Pontoise, 2, av. A. Chauvin, BP 222, 95302 Cergy-Pontoise cedex, France
Email: michela.varagnolo@math.u-cergy.fr

Eric Vasserot
Affiliation: Département de mathématique, Université de Cergy-Pontoise, 2, av. A. Chauvin, BP 222, 95302 Cergy-Pontoise cedex, France
Email: eric.vasserot@math.u-cergy.fr

DOI: https://doi.org/10.1090/S1088-4165-03-00154-7
Received by editor(s): January 14, 2002
Received by editor(s) in revised form: March 1, 2002, January 28, 2003, and May 27, 2003
Published electronically: June 27, 2003
Additional Notes: Both authors are partially supported by EU grant # ERB FMRX-CT97-0100
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society