-analogs of -characters of Kirillov-Reshetikhin modules of quantum affine algebras

Author:
Hiraku Nakajima

Journal:
Represent. Theory **7** (2003), 259-274

MSC (2000):
Primary 17B37; Secondary 81R50, 82B23

DOI:
https://doi.org/10.1090/S1088-4165-03-00164-X

Published electronically:
July 10, 2003

MathSciNet review:
1993360

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the Kirillov-Reshetikhin conjecture concerning certain finite dimensional representations of a quantum affine algebra when is an untwisted affine Lie algebra of type . We use -analog of -characters introduced by the author in an essential way.

**1.**V. Chari,*Braid group actions and tensor products*, Int. Math. Res. Not. 2002, no. 7, 357-382. MR**2003a:17014****2.**V. Chari and A. Pressley,*Quantum affine algebras and their representations*, in*Representations of groups (Banff, AB, 1994)*, Amer. Math. Soc., Providence, RI, 1995, pp. 59-78. MR**96j:17009****3.**V.G. Drinfel'd,*A new realization of Yangians and quantized affine algebras*, Soviet math. Dokl.**32**(1988), 212-216. MR**88j:17020****4.**E. Frenkel and N. Reshetikhin,*Quantum affine algebras and deformations of the Virasoro and -algebras*, Comm. Math. Phys.**178**(1996), 237-264. MR**98a:17042****5.**-,*The -characters of representations of quantum affine algebras and deformations of -algebras*, in*Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998)*, Contemp. Math.,**248**, Amer. Math. Soc., Providence, RI, 1999, 163-205. MR**2002f:17022****6.**E. Frenkel and E. Mukhin,*Combinatorics of -characters of finite-dimensional representations of quantum affine algebras*, Comm. Math. Phys.**216**(2001), 23-57. MR**2002c:17023****7.**G. Hatayama, A. Kuniba, M. Okado, T. Takagi and Y. Yamada,*Remarks on fermionic formula*, in*Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998)*, Contemp. Math.**248**(1999), 243-291. MR**2001m:81129****8.**A.N. Kirillov and N. Reshetikhin,*Representation of Yangians and multiplicity of the inclusion of the irreducible components of the tensor product of representations of simple Lie algebras*, J. Sov. Math.**52**(1990), 3156-3164. MR**89b:17012****9.**H. Knight,*Spectra of tensor products of finite-dimensional representations of Yangians*, J. Algebra**174**(1995), 187-196. MR**96g:17015****10.**A. Kuniba, T. Nakanishi and J. Suzuki,*Functional relations in solvable lattice models: I. Functional relations and representation theory*, Int. J. Mod. Phys. A**9**(1994), 5215-5266. MR**96h:82003****11.**A. Kuniba, T. Nakanishi and Z. Tsuboi,*The canonical solutions of the**-systems and the Kirillov-Reshetikhin conjecture*, Comm. Math. Phys.**227**(2002), 155-190. MR**2003e:81085****12.**G. Lusztig,*Ferminonic form and Betti numbers*, preprint, arXiv:math.QA/0005010.**13.**H. Nakajima,*Quiver varieties and finite dimensional representations of quantum affine algebras*, J. Amer. Math. Soc.,**14**(2001), 145-238. MR**2002i:17023****14.**-,*-analogue of the -characters of finite dimensional representations of quantum affine algebras*, in ``Physics and Combinatorics'', Proceedings of the Nagoya 2000 International Workshop, World Scientific, 2001, 195-218. MR**2003b:17020****15.**-,*Quiver varieties and**-analogs of**-characters of quantum affine algebras*, preprint, arXiv:math.QA/0105173.**16.**-,*-analogs of**-characters of quantum affine algebras of type**,*, to appear.**17.**M. Varagnolo and E. Vasserot,*Standard modules of quantum affine algebras*, in Duke Math. J.**111**(2002), 509-533. MR**2003g:17030****18.**-,*Perverse sheaves and quantum Grothendieck rings*, preprint, arXiv:math. QA/0103182.

Retrieve articles in *Representation Theory of the American Mathematical Society*
with MSC (2000):
17B37,
81R50,
82B23

Retrieve articles in all journals with MSC (2000): 17B37, 81R50, 82B23

Additional Information

**Hiraku Nakajima**

Affiliation:
Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan

Email:
nakajima@kusm.kyoto-u.ac.jp

DOI:
https://doi.org/10.1090/S1088-4165-03-00164-X

Received by editor(s):
April 29, 2002

Published electronically:
July 10, 2003

Additional Notes:
Supported by the Grant-in-aid for Scientific Research (No.13640019), JSPS

Dedicated:
Dedicated to Professor Takushiro Ochiai on his sixtieth birthday

Article copyright:
© Copyright 2003
American Mathematical Society