Multiplicity-free products and restrictions of Weyl characters

Author:
John R. Stembridge

Journal:
Represent. Theory **7** (2003), 404-439

MSC (2000):
Primary 17B10, 05E15; Secondary 20G05, 22E46

DOI:
https://doi.org/10.1090/S1088-4165-03-00150-X

Published electronically:
October 7, 2003

MathSciNet review:
2017064

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We classify all multiplicity-free products of Weyl characters, or equivalently, all multiplicity-free tensor products of irreducible representations of complex semisimple Lie algebras. As a corollary, we also obtain the classification of all multiplicity-free restrictions of irreducible representations to reductive subalgebras of parabolic type.

**[BZ]**A. D. Berenstein and A. V. Zelevinsky,*When is the multiplicity of a weight equal to 1?*, Funct. Anal. Appl.**24**(1990), 259-269. MR**92a17012****[B]**R. Brauer,*Sur la multiplication des charactéristiques des groupes continus et semi-simples*, C. R. Acad. Sci. Paris**204**(1937), 1784-1786.**[Ho]**R. Howe,*Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond*, The Schur lectures (1992) (Tel Aviv),*Israel Math. Conf. Proc.***8**, Bar-Ilan Univ., Ramat Gan, 1995, pp. 1-182. MR**96e:13006****[H]**J. E. Humphreys,*Introduction to Lie Algebras and Representation Theory*, Springer-Verlag, Berlin-New York, 1972. MR**48:2197****[K]**M. Kashiwara,*On crystal bases*, Representations of Groups (Banff, AB, 1994)*CMS Conf. Proc.***16**, Amer Math. Soc., Providence RI, 1995, pp. 155-197. MR**97a:17016****[KW]**R. C. King and B. G. Wybourne,*Multiplicity-free tensor products of irreducible representations of the exceptional Lie groups*, J. Phys. A**35**(2002), 3489-3513. MR**2003f:22018****[Kl]**A. U. Klimyk,*Decomposition of a direct product of irreducible representations of a semisimple Lie algebra into a direct sum of irreducible representations*, Amer. Math. Soc. Transl., Series 2**76**(1968), 63-73.**[L1]**P. Littelmann,*A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras*, Invent. Math.**116**(1994), 329-346. MR**95f:17023****[L2]**P. Littelmann,*On spherical double cones*, J. Algebra**166**(1994), 142-157. MR**95c:14066****[L3]**P. Littelmann,*Paths and root operators in representation theory*, Ann. of Math.**142**(1995), 499-525. MR**96m:17011****[MWZ1]**P. Magyar, J. Weyman and A. Zelevinsky,*Multiple flag varieties of finite type*, Adv. Math.**141**(1999), 97-118. MR**99m:14095****[MWZ2]**P. Magyar, J. Weyman and A. Zelevinsky,*Symplectic multiple flag varieties of finite type*, J. Algebra**230**(2000), 245-265. MR**2001i:14064****[P]**R. A. Proctor,*Bruhat lattices, plane partition generating functions, and minuscule representations*, Europ. J. Combin.**5**(1984), 331-350. MR 86h:17007**[PRV]**K. R. Parthasarathy, R. Ranga Rao and V. S. Varadarajan,*Representations of complex semi-simple Lie groups and Lie algebras*, Ann. of Math.**85**(1967), 383-429. MR**37:1526****[St1]**J. R. Stembridge,*Computational aspects of root systems, Coxeter groups, and Weyl characters*, Interactions of Combinatorics and Representation Theory,*MSJ Memoirs***11**, Math. Soc. Japan, Tokyo, 2001, pp. 1-38. MR**2002k:05244****[St2]**J. R. Stembridge,*Multiplicity-free products of Schur functions*, Ann. Comb.**5**(2001), 113-121. MR**2003f:05124****[St3]**J. R. Stembridge,*Combinatorial models for Weyl characters*, Adv. Math.**168**(2002), 96-131. MR 2003j:17007**[St4]**J. R. Stembridge,*A weighted enumeration of maximal chains in the Bruhat order*, J. Algebraic Combin.**15**(2002), 291-301. MR**2003e:05149****[W]**J. Weyman,*Pieri's formulas for classical groups*, Contemp. Math.**88**(1989), 177-184. MR**90d:17008**

Retrieve articles in *Representation Theory of the American Mathematical Society*
with MSC (2000):
17B10,
05E15,
20G05,
22E46

Retrieve articles in all journals with MSC (2000): 17B10, 05E15, 20G05, 22E46

Additional Information

**John R. Stembridge**

Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109–1109

Email:
jrs@umich.edu

DOI:
https://doi.org/10.1090/S1088-4165-03-00150-X

Received by editor(s):
December 12, 2001

Received by editor(s) in revised form:
September 22, 2003

Published electronically:
October 7, 2003

Additional Notes:
This work was supported by NSF Grant DMS–0070685

Article copyright:
© Copyright 2003
American Mathematical Society