Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Representation Theory
Representation Theory
ISSN 1088-4165

 

On some representations of the rational Cherednik algebra


Authors: Tatyana Chmutova and Pavel Etingof
Journal: Represent. Theory 7 (2003), 641-650
MSC (2000): Primary 16G10; Secondary 16Sxx, 20C08
Published electronically: November 21, 2003
MathSciNet review: 2017070
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study lowest weight representations of the rational Cherednik algebra attached to a complex reflection group $W$. In particular, we generalize a number of previous results due to Berest, Etingof, and Ginzburg.


References [Enhancements On Off] (What's this?)

  • [BEG] Yu. Berest, P. Etingof, V. Ginzburg, Finite dimensional representations of rational Cherednik algebras, Int. Math. Res. Not. 2003, no. 19, 1053-1088.
  • [BEG1] Yuri Berest, Pavel Etingof, Victor Ginzburg, Cherednik algebras and differential operators on quasi-invariants, Duke Math. J. 118, no. 2 (2003), 279-337.
  • [E] David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960 (97a:13001)
  • [EG] Pavel Etingof and Victor Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math. 147 (2002), no. 2, 243–348. MR 1881922 (2003b:16021), http://dx.doi.org/10.1007/s002220100171
  • [Du] Charles F. Dunkl, Intertwining operators and polynomials associated with the symmetric group, Monatsh. Math. 126 (1998), no. 3, 181–209. MR 1651774 (2001b:33021), http://dx.doi.org/10.1007/BF01367762
  • [DO] C. F. Dunkl, E. M. Opdam, Dunkl operators for complex reflection groups, Proc. London Math. Soc. (3) 86 (2003), no. 1, 70-108.
  • [Go] Iain Gordon, On the quotient ring by diagonal harmonics, math.RT/0208126.
  • [GGOR] Victor Ginzburg, Nicolas Guay, Eric Opdam, Raphael Rouquier, On the category O for rational Cherednik algebras, math.RT/0212036.
  • [S] Jean-Pierre Serre, Algèbre locale. Multiplicités, Cours au Collège de France, 1957–1958, rédigé par Pierre Gabriel. Seconde édition, 1965. Lecture Notes in Mathematics, vol. 11, Springer-Verlag, Berlin-New York, 1965 (French). MR 0201468 (34 #1352)

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 16G10, 16Sxx, 20C08

Retrieve articles in all journals with MSC (2000): 16G10, 16Sxx, 20C08


Additional Information

Tatyana Chmutova
Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
Email: chmutova@math.harvard.edu

Pavel Etingof
Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Email: etingof@math.mit.edu

DOI: http://dx.doi.org/10.1090/S1088-4165-03-00214-0
PII: S 1088-4165(03)00214-0
Received by editor(s): April 8, 2003
Received by editor(s) in revised form: October 10, 2003
Published electronically: November 21, 2003
Article copyright: © Copyright 2003 American Mathematical Society