TOTAL POSITIVITY IN THE DE CONCINI-PROCESI COMPACTIFICATION

XUHUA HE

Abstract. We study the nonnegative part $G^>_{\geq 0}$ of the De Concini-Procesi compactification of a semisimple algebraic group G, as defined by Lusztig. Using positivity properties of the canonical basis and parametrization of flag varieties, we will give an explicit description of $G^>_{\geq 0}$. This answers the question of Lusztig in Total positivity and canonical bases, Algebraic groups and Lie groups (ed. G.I. Lehrer), Cambridge Univ. Press, 1997, pp. 281-295. We will also prove that $G^>_{\geq 0}$ has a cell decomposition which was conjectured by Lusztig.

0. Introduction

Let G be a connected split semisimple algebraic group of adjoint type over \mathbb{R}. We identify G with the group of its \mathbb{R}-points. In [DP], De Concini and Procesi defined a compactification \overline{G} of G and decomposed it into strata indexed by the subsets of a finite set I. We will denote these strata by $\{Z_J \mid J \subset I\}$. Let $G_{>0}$ be the set of strictly totally positive elements of G and $G_{\geq 0}$ be the set of totally positive elements of G (see [L1]). We denote by $G^>_{\geq 0}$ the closure of $G_{>0}$ in G. The main goal of this paper is to give an explicit description of $G^>_{\geq 0}$ (see 3.14). This answers the question in [L4, 9.4]. As a consequence, I will prove in 3.17 that $G^>_{\geq 0}$ has a cell decomposition which was conjectured by Lusztig.

To achieve our goal, it is enough to understand the intersection of $G^>_{\geq 0}$ with each stratum. We set $Z_{J,>0} = G^>_{\geq 0} \cap Z_J$. Note that $Z_I = G$ and $Z_{I,\geq 0} = G_{\geq 0}$. We define $Z_{J,>0}$ as a certain subset of $Z_{J,\geq 0}$ analogous to $G_{>0}$ for $G_{\geq 0}$ (see 2.6). When G is simply-laced, we will prove in 2.7 a criterion for $Z_{J,>0}$ in terms of its image in certain representations of G, which is analogous to the criterion for $G_{>0}$ in [L4] 5.4. As Lusztig pointed out in [L2], although the definition of total positivity was elementary, many of the properties were proved in a non-elementary way, using canonical bases and their positivity properties. Our Theorem 2.7 is an example of this phenomenon. As a consequence, we will see in 2.9 that $Z_{J,>0}$ is the closure of $Z_{J,\geq 0}$ in Z_J.

Note that Z_J is a fiber bundle over the product of two flag manifolds. Then understanding $Z_{J,>0}$ is equivalent to understanding the intersection of $Z_{J,\geq 0}$ with each fiber. In 3.5, we will give a characterization of $Z_{J,>0}$ which is analogous to the elementary fact that $G_{>0} = \bigcap_{g \in G_{>0}} g^{-1}G_{>0}$. It allows us to reduce our problem to the problem of understanding certain subsets of some unipotent groups. Using the
parametrization of the totally positive part of the flag varieties (see [MR]), we will give an explicit description of the subsets of G (see 3.7). Thus our main theorem can be proved.

1. Preliminaries

1.1. We will often identify a real algebraic variety with the set of its R-rational points. Let G be a connected semisimple adjoint algebraic group defined and split over R, with a fixed épingle $(T, B^+, B^-, x_i, y_i; i \in I)$ (see [LI] 1.1)). Let U^+, U^- be the unipotent radicals of B^+, B^-. Let X (resp. Y) be the free abelian group of all homomorphism of algebraic groups $T \rightarrow \mathbb{R}^*$ (resp. $\mathbb{R}^* \rightarrow T$) and $(,): Y \times X \rightarrow Z$ be the standard pairing. We write the operation in these groups as addition. For $i \in I$, let $\alpha_i \in X$ be the simple root such that $tx_i(a)t^{-1} = x_i(a)^{\alpha_i(t)}$ for all $a \in R, t \in T$ and let $\alpha_i^+ \in Y$ be the simple coroot corresponding to α_i. For any root α, we denote by U_α the root subgroup corresponding to α.

There is a unique isomorphism $\psi: G \xrightarrow{\sim} G^{opp}$ (the opposite group structure) such that $\psi(x_i(a)) = y_i(a), \psi(y_i(a)) = x_i(a)$ for all $i \in I$, $a \in R$ and $\psi(t) = t$, for all $t \in T$.

If P is a subgroup of G and $g \in G$, we write gP instead of gPg^{-1}.

For any algebraic group H, we denote the Lie algebra of H by $\text{Lie}(H)$ and the center of H by $Z(H)$.

For any variety X and an automorphism σ of X, we denote the fixed point set of σ on X by X^σ.

For any group, We will write 1 for the identity element of the group.

For any finite set X, we will write $|X|$ for the cardinal of X.

1.2. Let $N(T)$ be the normalizer of T in G and $s_i = x_i(-1)y_i(1)x_i(-1) \in N(T)$ for $i \in I$. Set $W = N(T)/T$ and s_i to be the image of s_i in W. Then W together with $(s_i)_{i \in I}$ is a Coxeter group.

Define an expression for $w \in W$ to be a sequence $w = (w_{(0)}, w_{(1)}, \ldots, w_{(n)})$ in W, such that $w_{(0)} = 1, w_{(n)} = w$ and for any $j = 1, 2, \ldots, n$, $w_{(j-1)}^{-1}w_{(j)} = 1$ or s_i for some $i \in I$. An expression $w = (w_{(0)}, w_{(1)}, \ldots, w_{(n)})$ is called reduced if $w_{(j-1)} < w_{(j)}$ for all $j = 1, 2, \ldots, n$. In this case, we will set $l(w) = n$. It is known that $l(w)$ is independent of the choice of the reduced expression. Note that if w is a reduced expression of w, then for all $j = 1, 2, \ldots, n$, $w_{(j-1)}^{-1}w_{(j)} = s_i$ for some $i \in J$. Sometimes we will simply say that $s_i, s_{i_{2}} \ldots s_{i_{n}}$ is a reduced expression of w.

For $w \in W$, set $w = s_{i_{1}}s_{i_{2}} \ldots s_{i_{n}}$ where $s_{i_{1}}s_{i_{2}} \ldots s_{i_{n}}$ is a reduced expression of w. It is well known that w is independent of the choice of the reduced expression $s_{i_{1}}s_{i_{2}} \ldots s_{i_{n}}$ of w.

Assume that $w = (w_{(0)}, w_{(1)}, \ldots, w_{(n)})$ is a reduced expression of w and $w_{(j)} = w_{(j-1)}s_{i_{j}}$ for all $j = 1, 2, \ldots, n$. Suppose that $v \leq w$ for the standard partial order in W. Then there is a unique sequence $v = (v_{(0)}, v_{(1)}, \ldots, v_{(n)})$ such that $v_{(0)} = 1, v_{(n)} = v, v_{(j)} \in \{v_{(j-1)}s_{i_{j}}, v_{(j-1)}s_{i_{j}}\}$ and $v_{(j-1)} < v_{(j-1)}s_{i_{j}}$ for all $j = 1, 2, \ldots, n$ (see [MR] 3.5). v is called the positive subexpression of w. We define

$$J_{\mathbf{v}}^+ = \{ j \in \{1, 2, \ldots, n\} \mid v_{(j-1)} < v_{(j)} \},$$

$$J_{\mathbf{v}}^- = \{ j \in \{1, 2, \ldots, n\} \mid v_{(j-1)} = v_{(j)} \}.$$

Then by the definition of v, we have $\{1, 2, \ldots, n\} = J_{\mathbf{v}}^+ \cup J_{\mathbf{v}}^-$.

1.3. Let \mathcal{B} be the variety of all Borel subgroups of G. For B, B' in \mathcal{B}, there is a unique $w \in W$, such that (B, B') is in the G-orbit on $\mathcal{B} \times \mathcal{B}$ (diagonal action) that contains $(B^+, w B^+)$. Then we write $\text{pos}(B, B') = w$. By the definition of pos, $\text{pos}(B, B') = \text{pos}(g B, g B')$ for any $B, B' \in \mathcal{B}$ and $g \in G$.

For any subset J of I, let W_J be the subgroup of W generated by $\{s_j \mid j \in J\}$ and let w_0 be the unique element of maximal length in W_J. (We will simply write w_0 as w_0.) We denote by P_J the subgroup of G generated by B^+ and by $\{y_j(a) \mid j \in J, a \in R\}$ and denote by \mathcal{P}^J the variety of all parabolic subgroups of G conjugated to P_J. If and only if $\{\text{pos}(B_1, B_2) \mid B_1, B_2 \text{ are Borel subgroups of } P\} = W_J$.

1.4. For any parabolic subgroup P of G, define U_P to be the unipotent radical of P and H_P to be the inverse image of the connected center of P/U_P under $P \to P/U_P$.

If B is a Borel subgroup of G, then so is $P^B = (P \cap B)U_P$.

It is easy to see that for any $g \in H_P$, we have $g(P^B) = P^B$. Moreover, P^B is the unique Borel subgroup B' in P such that $\text{pos}(B, B') \in W_J$, where W_J is the set of minimal length coset representatives of W/W_J (see [L5 3.2(a)]).

Let P, Q be parabolic subgroups of G. We say that P, Q are opposed if their intersection is a common Levi of P, Q. (We then write $P \cong Q$.) It is easy to see that if $P \cong Q$, then for any parabolic subgroup B of P and B' of Q, we have $\text{pos}(B, B') \in W_J w_0$.

For any subset J of I, define $J^* \subset I$ by $\{Q \mid Q \cong P \text{ for some } P \in \mathcal{P}^J\} = \mathcal{P}^{J^*}$. Then we have $(J^*)^* = J$. Let Q_J be the subgroup of G generated by B^- and by $\{x_j(a) \mid j \in J, a \in R\}$. We have $Q_J \in \mathcal{P}^{J^*}$ and $P_J \cong Q_J$. Moreover, for any $P \in \mathcal{P}^J$, we have $P = g P_J$ for some $g \in G$. Thus $\psi(P) = \psi(g)^{-1} Q_J \in \mathcal{P}^{J^*}$.

1.5. Recall the following definitions from [L1].

For any $w \in W$, assume that $w = s_{i_1}s_{i_2}\cdots s_{i_n}$ is a reduced expression of w. Define $\phi^\pm : R_{>0}^n \to U^\pm$ by

$$\phi^+(a_1, a_2, \ldots, a_n) = x_{i_1}(a_1)x_{i_2}(a_2)\cdots x_{i_n}(a_n),$$
$$\phi^-(a_1, a_2, \ldots, a_n) = y_{i_1}(a_1)y_{i_2}(a_2)\cdots y_{i_n}(a_n).$$

Let $U_{w,>0}^\pm = \phi^\pm(R_{>0}^n) \subset U^\pm$, $U_{w,0}^\pm = \phi^\pm(R_{>0}^n) \subset U^\pm$. Then $U_{w,>0}^\pm$ and $U_{w,0}^\pm$ are independent of the choice of the reduced expression of w. We will simply write $U_{w,>0}^\pm$ as $U^\pm_{>0}$ and $U_{w,0}^\pm$ as U^\pm_0.

Let $T_{>0}$ be the submonoid of T generated by the elements $\chi(a)$ for $\chi \in Y$ and $a \in R_{>0}$.

$G_{>0}$ is the submonoid $U_{>0}^\pm T_{>0} U_{>0} = U_{>0}^\pm T_{>0} U_{>0}^\pm$ of G.

$G_{\geq 0}$ is the submonoid $U_{\geq 0}^\pm T_{>0} U_{>0} = U_{\geq 0}^\pm T_{>0} U_{>0}^\pm$ of $G_{>0}$.

$B_{>0}$ is the subset $\{u B^- \mid u \in U_{>0}^+\} = \{u B^+ \mid u \in U_{>0}\}$ of B and $B_{\geq 0}$ is the closure of $B_{>0}$ in the manifold B.

For any subset J of I, $\mathcal{P}^J_{>0} = \{P \in \mathcal{P}^J \mid \exists B \in B_{>0}, \text{ such that } B \subset P\}$ and $\mathcal{P}^J_{\geq 0} = \{P \in \mathcal{P}^J \mid \exists B \in B_{\geq 0}, \text{ such that } B \subset P\}$ are subsets of \mathcal{P}^J.

1.6. For any $w, w' \in W$, define

$$\mathcal{R}_{w, w'} = \{B \in \mathcal{B} \mid \text{pos}(B^+, B) = w', \text{pos}(B^-, B) = w_0 w\}.$$
It is known that $R_{w,w'}$ is nonempty if and only if $w \leq w'$ for the standard partial order in W (see [KL]). Now set
\[R_{w,w',>0} = B_{>0} \cap R_{w,w'}. \]
Then $R_{w,w',>0}$ is a connected component of $R_{w,w'}$ and is a semi-algebraic cell (see [R2] 2.8). Furthermore, $B = \bigcup_{w \leq w'} R_{w,w'}$ and $B_{\geq 0} = \bigcup_{w \leq w'} R_{w,w',>0}$. Moreover, for any $u \in U_{w,-1,>0}$, we have $uR_{w,w',>0} \subset R_{1,w',>0}$ (see [R2] 2.2).

Let J be a subset of I. Define $\pi_J : B \to \mathcal{P}_J$ to be the map which sends a Borel subgroup to the unique parabolic subgroup in \mathcal{P}_J that contains the Borel subgroup. For any $w, w' \in W$ such that $w \leq w'$ and $w' \in W_J$, set $\mathcal{P}_{w,w'}^J = \pi_J(R_{w,w'})$ and $\mathcal{P}_{w,w',>0}^J = \pi_J(R_{w,w',>0})$. We have $\mathcal{P}_{\geq 0}^J = \bigcup_{w \leq w'} \mathcal{P}_{w,w',>0}^J$ and $\mathcal{P}_J |_{R_{w,w',>0}}$ maps $R_{w,w',>0}$ bijectively onto $\mathcal{P}_{w,w',>0}^J$ (see [R1] Chapter 4, 3.2). Hence, for any $u \in U_{w,-1,>0}$, we have $u\mathcal{P}_{w,w',>0}^J = \mathcal{P}_{w,w',>0}^J(uR_{w,w',>0}) \subset \mathcal{P}_J |_{\mathcal{P}_{w,w',>0}}$.

1.7. Define $\pi_T : B \to T$ by $\pi_T(utu') = t$ for $u \in U^-, t \in T, u' \in U^+$. Then for $b_j \in B^-, b_j' \in B^+ \cdot B^+, b_j \in B^+$, we have $\pi_T(b_j b_j') = \pi_T(b_j) \pi_T(b_j') \pi_T(b_j)$.

Let J be a subset of I. We denote by Φ_J^+ the set of roots that are a linear combination of $\{\alpha_j | j \in J\}$ with nonnegative coefficients. We will simply write Φ_J^+ as Φ^+ and we will call a root α positive if $\alpha \in \Phi^+$. In this case, we will simply write $\alpha > 0$. Define U_J^+ to be the subgroup of U^+ generated by $\{U_\alpha | \alpha \in \Phi_J^+\}$ and U_J^- to be the subgroup of U^+ generated by $\{U_\alpha | \alpha \in \Phi^+ - \Phi_J^+\}$. Then $U^- \cdot T \cdot U_J^+ \cdot U_J^- = U^- \cdot T \cdot U_J^+$. Thus it is easy to see that for any $a, b \in G$ such that $a, ab \in B^- \cdot B^+$, we have $\pi_{U_J^+}(ab) = \pi_{U_J^+}(\pi_{U^+}(a)b)$. Since U_J^+ is a normal subgroup of U^+, $\pi_{U_J^+} |_{U^+}$ is a homomorphism of U^+ onto U_J^+. Moreover, we have
\[\pi_{U_J^+}(x_i(a)) = \begin{cases} x_i(a), & \text{if } i \in J; \\ 1, & \text{otherwise.} \end{cases} \]

Thus $\pi_{U_J^+}(U_{\alpha,-}^+) = U_{\alpha,-}^+$ and $\pi_{U_J^+}(U_{\alpha,>0}^+) = U_{\alpha,>0}^+$.

Let U_{J}^- be the subgroup of U^- generated by $\{U_{-\alpha} | \alpha \in \Phi_J^+\}$ and U_{J}^- to be the subgroup of U^- generated by $\{U_{-\alpha} | \alpha \in \Phi^+ - \Phi_J^+\}$. Then we define $\pi_{U_{J}^-} : U^- \to U_{J}^-$ by $\pi_{U_{J}^-}(u_1 u_2) = u_1$ for $u_1 \in U_{J}, u_2 \in U_{J}^-$. (We will simply write $\pi_{U_{J}^-}$ as π_{U^-}.) We have $\pi_{U_{J}^-}(U_{\alpha,-}^+) = U_{\alpha,-}^+$ and $\pi_{U_{J}^-}(U_{\alpha,>0}^-) = U_{\alpha,>0}^-$.

1.8. For any vector space V and a nonzero element v of V, we denote the image of v in $P(V)$ by $[v]$.

If (V, ρ) is a representation of G, we denote by (V^*, ρ^*) the dual representation of G. Then we have the standard isomorphism $St_V : V \otimes V^* \cong \End(V)$ defined by $St_V(v \otimes v^*)(v) = \rho^*(v')v$ for all $v, v' \in V, v^* \in V^*$. Now we have the $G \times G$ action on $V \otimes V^*$ by $(g_1, g_2) : (v \otimes v^*) = (g_1 v) \otimes (g_2 v^*)$ for all $g_1, g_2 \in G, v \in V, v^* \in V^*$ and the $G \times G$ action on $\End(V)$ by $[(g_1, g_2) : f](v) = g_1 f(g_2^{-1} v)$ for all $g_1, g_2 \in G, f \in \End(V), v \in V$. The standard isomorphism between $V \otimes V^*$ and $\End(V)$ commutes with the $G \times G$ action. We will identify $\End(V)$ with $V \otimes V^*$ via the standard isomorphism.
2. The strata of the De Concini-Procesi Compactification

2.1. Let \mathcal{V}_G be the projective variety whose points are the dim(G)-dimensional Lie subalgebras of Lie($G \times G$). For any subset J of I, define

$$Z_J = \{(P, Q, \gamma) \mid P \in \mathcal{P}^J, Q \in \mathcal{P}^{J^*}, \gamma = H_P g U_Q, P \cong Q\}$$

with the $G \times G$ action by $(g_1, g_2) \cdot (P, Q, H_P g U_Q) = (g_1 P, g_2 Q, H_{g_1} P (g_1 g_2^{-1}) U_{g_2} Q)$.

For $(P, Q, \gamma) \in Z_J$ and $g \in G$, we set

$$H_{P, Q, \gamma} = \{(l + u_1, \text{Ad}(g^{-1}) l + u_2) \mid l \in \text{Lie}(P \cap Q), u_1 \in \text{Lie}(U_P), u_2 \in \text{Lie}(U_Q)\}$$

Then $H_{P, Q, \gamma}$ is independent of the choice of g (see [L6, 12.2]) and is an element of \mathcal{V}_G (see [L6, 12.1]). Moreover, $(P, Q, \gamma) \rightarrow H_{P, Q, \gamma}$ is an embedding of $Z_J \subset \mathcal{V}_G$ (see [L6, 12.2]). We will identify Z_J with the subvariety of \mathcal{V}_G defined above. Then we have $\tilde{G} = \bigsqcup_{J \subset I} Z_J$, where \tilde{G} is the De Concini-Procesi compactification of G (see [L6, 12.3]). We will call $\{Z_J \mid J \subset I\}$ the strata of \tilde{G} and Z_I (resp. Z_\emptyset) the highest (resp. lowest) stratum of \tilde{G}. It is easy to see that Z_I is isomorphic to G and Z_\emptyset is isomorphic to $\mathcal{B} \times \mathcal{B}$.

Set $z_J^g = (P_J, Q_J, H_{P_J, Q_J})$. Then $z_J^g \in Z_J$ (see 1.4) and $Z_J = (G \times G) \cdot z_J^g$.

Since G is adjoint, we have an isomorphism $\chi : T \overset{\cong}{\rightarrow} (\mathbb{R}^*)^I$ defined by $\chi(t) = (\alpha_i(t)^{-1})_{i \in J}$. We denote the closure of T in \tilde{G} by \tilde{T}. We have $H_{P_J, Q_J, H_{P_J, Q_J}} = \{(l + u_1, l + u_2) \mid l \in \text{Lie}(P_J \cap Q_J), u_1 \in U_P, u_2 \in U_Q\}$. Moreover, for any $t \in Z(P_J \cap Q_J)$, H_t is the subspace of $\text{Lie}(G) \times \text{Lie}(G)$ spanned by the elements $(l, (l, \text{Ad}(t^{-1}) u_1), (\text{Ad}(t) u_2, u_2))$, where $l \in \text{Lie}(P_J \cap Q_J), u_1 \in U_P, u_2 \in U_Q$. Thus it is easy to see that $z_J^g = \lim_{t_i \rightarrow t, \forall j \notin J} \chi^{-1}((t_i)_{i \in I}) \in T$.

Proposition 2.2. The automorphism ψ of the variety G (see 1.1) can be extended in a unique way to an automorphism $\tilde{\psi}$ of \tilde{G}. Moreover, $\tilde{\psi}(P, Q, \gamma) = (\psi(Q), \psi(P), \psi(\gamma)) \in Z_J$ for $J \subset I$ and $(P, Q, \gamma) \in Z_J$.

Proof. The map $\psi : G \rightarrow G$ induces a bijective map $\psi : \text{Lie}(G) \rightarrow \text{Lie}(G)$. Moreover, we have $\psi(\text{Ad}(g)v) = \text{Ad}(\psi(g)^{-1}) \psi(v)$ and $\psi(v + v') = \psi(v) + \psi(v')$ for $g \in G, v, v' \in \text{Lie}(G)$. Now define $\delta : \text{Lie}(G) \times \text{Lie}(G) \rightarrow \text{Lie}(G) \times \text{Lie}(G)$ by $\delta(v, v') = (\psi(v'), \psi(v))$ for $v, v' \in \text{Lie}(G)$. Then δ induces a bijection $\tilde{\psi} : \mathcal{V}_G \rightarrow \mathcal{V}_G$.

Note that for any $g \in G$, we have $H_g = \{(v, \text{Ad}(g)v) \mid v \in \text{Lie}(G)\}$ and $\tilde{\psi}(H_g) = \{(\text{Ad}(\psi(g)^{-1}) v, \psi(v)) \mid v \in \text{Lie}(G)\} = H_{\psi(g)}$. Thus $\tilde{\psi}$ is an extension of the automorphism ψ of G into \mathcal{V}_G.

Now for any $(P, Q, \gamma) \in Z_J$ and $g \in G$, we have $\psi(P) \in \mathcal{P}^J$, $\psi(Q) \in \mathcal{P}^{J^*}$ and $\psi(Q) \cong \psi(g) \psi(P)$ (see 1.4). Thus $(\psi(Q), \psi(P), \psi(\gamma)) \in Z_J$. Moreover,

$$\tilde{\psi}(H_{P, Q, \gamma}) = \{(\text{Ad}(\psi(g)) \psi(l) + \psi(u_2), \psi(l) + \psi(u_1)) \mid l \in \text{Lie}(P \cap Q), u_1 \in \text{Lie}(U_P), u_2 \in \text{Lie}(U_Q)\}$$

$$= \{(l + u_2, \text{Ad}(\psi(g)^{-1}) l + u_1) \mid l \in \text{Lie}(\psi(Q) \cap \psi(g) \psi(P)), u_1 \in \text{Lie}(\psi(U_P)), u_2 \in \text{Lie}(\psi(U_Q))\}$$

Therefore $\tilde{\psi} |_{\tilde{G}}$ is an automorphism of \tilde{G}. Moreover, since \tilde{G} is the closure of G, $\tilde{\psi} |_{\tilde{G}}$ is the unique automorphism of \tilde{G} that extends the automorphism ψ of G.

The proposition is proved.

\hfill \Box
2.3. For any \(\lambda \in X \), set \(\text{supp}(\lambda) = \{ i \in I \mid \langle \alpha_i^\vee, \lambda \rangle \neq 0 \} \).

In the rest of the section, I will fix a subset \(J \) of \(I \) and \(\lambda_1, \lambda_2 \in X^+ \) with \(\text{supp}(\lambda_1) = I - J, \text{supp}(\lambda_2) = J \). Let \((V_{\lambda_1}, \rho_1) \) (resp. \((V_{\lambda_2}, \rho_2) \)) be the irreducible representation of \(G \) with the highest weight \(\lambda_1 \) (resp. \(\lambda_2 \)). Assume that \(\dim V_{\lambda_1} = n_1, \dim V_{\lambda_2} = n_2 \) and \(\{ v_1, v_2, \ldots, v_{n_1} \} \) (resp. \(\{ v'_1, v'_2, \ldots, v'_{n_2} \} \)) is the canonical basis of \((V_{\lambda_1}, \rho_1) \) (resp. \((V_{\lambda_2}, \rho_2) \)), where \(v_1 \) and \(v'_1 \) are the highest weight vectors. Moreover, after reordering \(\{ 2, 3, \ldots, n_2 \} \), we could assume that there exists some integer \(n_0 \in \{ 1, 2, \ldots, n_2 \} \) such that for any \(i \in \{ 1, 2, \ldots, n_2 \} \), the weight of \(v'_i \) is of the form \(\lambda_2 - \sum_{j \in J} a_{ij} \alpha_j \) if and only if \(i \leq n_0 \).

Define \(i_J : G \to P(\text{End}(V_{\lambda_1})) \times P(\text{End}(V_{\lambda_2})) \) by \(i_J(g) = ([\rho_1(g)], [\rho_2(g)]) \).
Then since \(\lambda_1 + \lambda_2 \) is a dominant and regular weight, the closure of the image of \(i_J \) in \(P(\text{End}(V_{\lambda_1})) \times P(\text{End}(V_{\lambda_2})) \) is isomorphic to the De Concini-Procesi compactification of \(G \) (See [DP] 4.1). We will use \(i_J \) as the embedding of \(G \) into \(P(\text{End}(V_{\lambda_1})) \times P(\text{End}(V_{\lambda_2})) \). We will also identify \(\bar{G} \) with its image under \(i_J \).

2.4. Now with respect to the canonical basis of \(V_{\lambda_1} \) and \(V_{\lambda_2} \), we will identify \(\text{End}(V_{\lambda_1}) \) with \(gl(n_1) \) and \(\text{End}(V_{\lambda_2}) \) with \(gl(n_2) \). Thus we will regard \(\rho_1(g), \rho_2(g) \) as \(n_1 \times n_1 \) matrices and \(\rho_2(g), \rho_2'(g) \) as \(n_2 \times n_2 \) matrices. It is easy to see that (in terms of matrices) for any \(g \in G, \rho_1(g) = (M)^t \rho_1(g^{-1}) \) and \(\rho_2'(g) = (M)^t \rho_2(g^{-1}) \), where \(M \) is the transpose of the matrix \(M \). Now for any \(g_1, g_2 \in G, M_1 \in gl(n_1), M_2 \in gl(n_2) \), \((g_1, g_2) \cdot M = \rho_1(g_1)M_1 \rho_2(g_2^{-1}) \) and \((g_1, g_2) \cdot M_2 = \rho_2(g_1)M_2 \rho_2(g_2^{-1}) \).

Set \(L = P_J \cap Q_J \). Then \(L \) is a reductive algebraic group with the épingle \((T, B^+ \cap L, B^- \cap L, x_j, y_j; j \in J)\). Now let \(V_L \) be the subspace of \(V_{\lambda_2} \) spanned by \(\{ v'_1, v'_2, \ldots, v'_{n_2} \} \) and \(I_L = (a_{ij}) \in gl(n_2) \), where
\[
a_{ij} = \begin{cases} 1, & \text{if } i = j \in \{ 1, 2, \ldots, n_0 \}; \\ 0, & \text{otherwise}. \end{cases}
\]

Then \(V_L \) is an irreducible representation of \(L \) with the highest weight \(\lambda_2 \) and canonical basis \(\{ v'_1, v'_2, \ldots, v'_{n_2} \} \). Moreover, \(\lambda_2 \) is a dominant and regular weight for \(L \). Now set \(I_1 = \text{diag}(1, 0, 0, \ldots, 0) \in gl(n_1), I_2 = \text{diag}(1, 0, 0, \ldots, 0) \in gl(n_2) \).
Then
\[
 i_J(z_j^o) = \lim_{t_j \to -0, v_j \in J} i_J \left(\chi^{-1}((t_j)_{v_j \in I}) \right) = \left([v_1 \otimes v'_1], \left[\sum_{i=1}^{n_0} v'_i \otimes v^*_i \right] \right) = \left([I_1], [I_L] \right),
\]
where \(\{ v_1^*, v_2^*, \ldots, v_{n_1}^* \} \) (resp. \(\{ v'_1^*, v'_2^*, \ldots, v'_{n_2}^* \} \)) is the dual basis in \((V_{\lambda_1})^* \) (resp. \((V_{\lambda_2})^* \)).

2.5. Recall that \(\text{supp}(\lambda_1) = I - J \). Thus for any \(P \in \mathcal{P}^J \), there is a unique \(P \)-stable line \(L_{\rho_1}(p) \) in \((V_{\lambda_1}, \rho_1) \) and \(P \mapsto L_{\rho_1}(p) \) is an embedding of \(\mathcal{P}^J \) into \(P(V_{\lambda_1}) \). Similarly, for any \(Q \in \mathcal{P}^{J^*} \), there is a unique \(Q \)-stable line \(L_{\rho_1^*(Q)} \) in \((V_{\lambda_1}^*, \rho_1^*) \) and \(Q \mapsto L_{\rho_1^*(Q)} \) is an embedding of \(\mathcal{P}^{J^*} \) into \(P(V_{\lambda_1}^*) \). It is easy to see \(L_{\rho_1^*(Q)} \mid [v_1], L_{\rho_1^*(Q)} \mid [v_1^*] \) and \(L_{\rho_1^*(Q)} = \rho_1(g) L_{\rho_1(p)} L_{\rho_1^*(Q)} = \rho_1^*(g) L_{\rho_1^*(Q)} \) for \(P \in \mathcal{P}^J, Q \in \mathcal{P}^{J^*}, g \in G \).

There are projections \(p_1 : P(\text{End}(V_{\lambda_1})) \times P(\text{End}(V_{\lambda_2})) \to P(\text{End}(V_{\lambda_1})) \) and \(p_2 : P(\text{End}(V_{\lambda_1})) \times P(\text{End}(V_{\lambda_2})) \to P(\text{End}(V_{\lambda_2})) \). It is easy to see that \(p_1 \mid z_j, p_2 \mid z_j \) commute with the \(G \times G \) action and \(p_1(z_j^o) = [v_1 \otimes v_1^*] = [L_{\rho_1(p_j)} \otimes L_{\rho_1^*(Q_j)}] \).
Now for any $g_1, g_2 \in G$, we have
\[p_1((g_1, g_2) \cdot z_J^p) = [p_1(g_1)L_{p_1(P)} \otimes p_1^*(g_2)L_{p_1^*(Qj)}] = [L_{p_1(v_1P)} \otimes L_{p_1^*(v_2Qj)}]. \]
In other words, $p_1(z) = [L_{p_1(P)} \otimes L_{p_1^*(Qj)}]$ for $z = (P, Q, \gamma) \in Z_J$.

2.6. Let $G_{>0}$ be the closure of G_0 in G. Then $G_{>0}$ is also the closure of G_0 in G. We have $z_J^p \in G_{>0}$ (see 2.1). Now set
\[Z_{J,>0} = Z_J \cap G_{>0}. \]

Since $\psi(G_{>0}) = G_{>0}$, we have $\psi(G_{>0}) = G_{>0}$. Moreover, $\psi(Z_J) = Z_J$ (see 2.2).

Therefore $\psi(Z_{J,>0}) = Z_{J,>0}$. Similarly, $(g_1, g_2^{-1}) \cdot Z_{J,>0} \subset Z_{J,>0}$ for any $g_1, g_2 \in G_0$. Thus $Z_{J,>0} \subset Z_{J,>0}$. Moreover, it is easy to see that $\psi(Z_{J,>0}) = Z_{J,>0}$.

Note that for any $u_1, u_2 \in U_{>0}, u_3, u_4 \in U_{>0}, t, t' \in T_{>0}$, we have
\[(u_1u_2t, u_3^{-1}u_4^{-1}t') \cdot z_J^p = (u_1u_2, u_3^{-1}u_4^{-1}) \cdot (P_J, Q_J, H_{P_J}t't'U_{Q_J}). \]

Thus
\[Z_{J,>0} = \{(u_1, u_2^{-1}) \cdot (P_J, Q_J, H_{P_J}t't'U_{Q_J}) \mid u_1 \in U_{>0}, u_2 \in U_{>0}, l \in L_{>0}\} = \{(u'_1t, u'_{2}^{-1}) \cdot z_J^p \mid u'_1 \in U_{>0}, u'_2 \in U_{>0}, t \in T_{>0}\}. \]

Moreover, for any $u_1, u'_1 \in U^-, u_2, u'_2 \in U^+$ and $t, t' \in T$, it is easy to see that
\[(u_1t, u_2) \cdot z_J^p = (u'_1t', u'_2) \cdot z_J^p \text{ if and only if } (u_1t)^{-1}u'_1t' \in l^{-1}H_{Q_J} \cap U^+ \subset IZ(L) \] and \[u_1^{-1}u'_2 \in l^{-1}H_{Q_J} \cap U^+ \subset IZ(L) \text{ for some } l \in L, \text{ that is, } l = Z(L), u_1 = u'_1, u_2 = u'_2 \] and $t \in t'Z(L)$. Thus, $Z_{J,>0} \cong U_{>0} \times U_{>0} \times T_{>0}/(T_{>0} \cap Z(L)) \cong R^2_{>0}$. \(\text{Proof.} \)

Now I will prove a criterion for $Z_{J,>0}$.

Theorem 2.7. Assume that G is simply-laced. Let $z \in Z_{J,>0}$. Then $z \in Z_{J,>0}$ if and only if z satisfies the condition (*):
\[(*) \quad i_J(z) = \left([M_1], [M_2] \right) \text{ and } i_J(\psi(z)) = \left([M_3], [M_4] \right) \text{ for some matrices } \]
\[M_1, M_3 \in gl(n_1) \text{ and } M_2, M_4 \in gl(n_2) \text{ with all the entries in } R_{>0}. \]

Proof. If $z \in Z_{J,>0}$, then $z = (g_1, g_2^{-1}) \cdot z_J^p$, for some $g_1, g_2 \in G_{>0}$. Assume that $g_1 \cdot v_1 = \sum_{i=1}^{n_1} a_i v_i$ and $g_2^{-1} \cdot v_1^* = \sum_{i=1}^{n_1} b_i v_i^*$. Then for any $i = 1, 2, \ldots, n_1$, $a_i, b_i > 0$. Set $a_{ij} = a_i b_j$. Then $p_1(z) = [p_1(g_1)v_1, p_1(g_2)] = [(a_{ij})]$ is a matrix with all the entries in $R_{>0}$.

We have $p_2(z) = [p_2(g_1)I_L p_2(g_2)] = [p_2(g_1)I_{h_1} p_2(g_2)]$. Note that $p_2(g_1)I_{h_1} p_2(g_2)$ is a matrix with all the entries in $R_{>0}$ and $p_2(g_1), p_2(g_2)$, $(I_{L} - I_2)$ are matrices with all the entries in $R_{>0}$. Thus $p_2(g_1)(I_{L} - I_2) p_2(g_2)$ is a matrix with all its entries in $R_{>0}$. So $p_2(g_1)I_L p_2(g_2)$ is a matrix with all the entries in $R_{>0}$.

Similarly, $i_J(z) = \left([M_3], [M_4] \right)$ for some matrices M_3, M_4 with all their entries in $R_{>0}$.

On the other hand, assume that z satisfies the condition (*). Suppose that $z = (P, Q, \gamma)$ and $L_{p_1(P)} = \sum_{i=1}^{n_1} a_i v_i$, $L_{p_1^*(Q)} = \sum_{i=1}^{n_1} b_i v_i^*$. We may also assume that $a_{i_0} = b_{i_1} = 1$ for some integers $i_0, i_1 \in \{1, 2, \ldots, n_1\}$.

Set $M = (a_{ij}) \in gl(n_1)$, where $a_{ij} = a_i b_j$ for $i, j \in \{1, 2, \ldots, n_1\}$. Then $p_1(z) = [L_{p_1(P)} \otimes L_{p_1^*(Q)}] = [M]$. By the condition (*) and since $a_{i_0i_1} = a_{i_0} b_{i_1} = 1,$
we have that M is a matrix with all its entries in $\mathbb{R}_{>0}$. In particular, for any $i \in \{1, 2, \ldots, n\}$, $a_{i^1} = a_i > 0$. Therefore $L_{P_i}(P) = \sum_{i=1}^{n_1} a_i v_i$, where $a_i > 0$ for all $i \in \{1, 2, \ldots, n\}$. By [11 5.1] (see also [13 3.4]), $P \in \mathcal{P}^{J}_{>0}$. Similarly, $\psi(Q) \in \mathcal{P}^{J}_{>0}$, so $L^{(j)}_U \psi(Q) P$ is the subspace of $V_{\mathcal{Q}}$ spanned by $\{v_1, v_2, \ldots, v_{n_0}^0\}$. By [R1, 5.1] (see also [L3, 3.4]), $P \in \mathcal{P}^{J}_{>0}$. Thus there exist $u_1 \in U_{>0}$, $u_2 \in U_{>0}$ and $l \in L^0$, such that $z = (u_1, u_2^{-1}) \cdot (P_l, Q_l, H_{P_l} l U_{Q_l})$.

We can express u_1, u_2 in a unique way as $u_1 = u_1' u_1''$, for some $u_1' \in U^- J^0$, $u_1'' \in U^+ J$ and $u_2 = u_2'' u_2'$, for some $u_2' \in U^- J^0$, $u_2'' \in U^+ J$ (see 1.7).

Recall that V_L is the subspace of $V_{\mathcal{L}}$ spanned by $\{v_1', v_2', \ldots, v_{n_0}^0\}$. Let V_L' be the subspace of $V_{\mathcal{L}}$ spanned by $\{v_{n_0+1}', v_{n_0+2}', \ldots, v_{n_2}'\}$. Then $u \cdot v - v \in V^{J}_L$ and $u \cdot V^J_L \subset V^J_L$, for all $v \in V_L$, $\alpha \notin \Phi_J$ and $u \in U^- \alpha$. Thus $u \cdot v - v \in V^{J}_L$ and $u \cdot V^J_L \subset V^J_L$, for all $v \in V_L$ and $u \notin U^- J$.

Similarly, let V^*_L be the subspace of $V^*_{\mathcal{L}}$ spanned by $\{v_1^*, v_2^*, \ldots, v_{n_0}^*\}$ and V^*_L be the subspace of $V^*_{\mathcal{L}}$ spanned by $\{v_{n_0+1}^*, v_{n_0+2}^*, \ldots, v_{n_2}^*\}$. Then for any $v^* \in V^*_L$ and $u \notin U^- J$, we have $u \cdot v - v \in V^*_{L}$ and $u V^*_L \subset V^*_{L}$.

We define a map $\pi_L : gl(n_0) \to gl(n_0)$ by

$$\pi_L((a_{ij})_{i,j \in \{1, 2, \ldots, n_2\}}) = (a_{ij})_{i,j \in \{1, 2, \ldots, n_2\}}.$$

Then for any $u \in U^- J$, $u' \in U^- J$ and $M \in gl(n_2)$, we have $\pi_L((u, u') \cdot M) = \pi_L(M)$. Set $M_2 = \rho_2(u_1 l U_L, \rho_2(u_2))$ and $l' = u_1'' l_1 u_2'' \in L$. Then

$$\pi_L(M_2) = \pi_L((u_1, u_2^{-1}) \cdot (\rho_2(l) l_1)) = \pi_L((u_1', u_2'^{-1}) \cdot (\rho_2(l) l_1))$$

$$= \pi_L((u_1', u_2'^{-1}) \cdot (\rho_2(l) l_1)) = \pi_L(\rho_2(l') l_1) = \rho_L(l').$$

Since $p_2(z) = [M_2]$, M_2 is a matrix with all its entries nonzero. Therefore $\rho_L(l') = \pi_L(M_2)$ is a matrix with all its entries nonzero. Thus $l' = t_1 l_1 t_2$, for some $l_1 \in U^- \cap L, l_2 \in U^+ \cap L, t_1 \in T$.

Set $\tilde{u}_1 = u_1' l_1$ and $\tilde{u}_2 = u_2'' l_2$. Then $\tilde{u}_1 p_{J_1} = u_1 u_{n_0}^{-1} l_1, P_j = u_1, P_j$. Similarly, we have $u_{n_0}^{-1} Q_j = u_2^{-1} Q_j$. So $z = (\tilde{u}_1, \tilde{u}_2^{-1}) \cdot (P_J, Q_J, H_{P_J} t_1 U_{Q_J})$.

Now for any $i_0, j_0 \in \{1, 2, \ldots, n_1\}$, define a map $\pi^{i_0, j_0}_1 : gl(n_0) \to \mathbb{R}$ by

$$\pi^{i_0, j_0}_1((a_{ij})_{i,j \in \{1, 2, \ldots, n_1\}}) = a_{i_0, j_0}$$

and for any $i_0, j_0 \in \{1, 2, \ldots, n_2\}$, define a map $\pi^{i_0, j_0}_2 : gl(n_0) \to \mathbb{R}$ by

$$\pi^{i_0, j_0}_2((a_{ij})_{i,j \in \{1, 2, \ldots, n_2\}}) = a_{i_0, j_0}.$$

Now $z = (\tilde{u}_1 t_1, \tilde{u}_2^{-1}) \cdot z^o_j$ and $\psi(z) = (\psi(\tilde{u}_2) t_1, \psi(\tilde{u}_1)^{-1}) \cdot z^o_j$.

Set

$$\tilde{M}_1 = \rho_1(\tilde{u}_1 t_1) I_1 \rho_1(\tilde{u}_2), \quad \tilde{M}_3 = \rho_1(\psi(\tilde{u}_2) t_1) I_1 \rho_1(\psi(\tilde{u}_1)),$$

$$\tilde{M}_2 = \rho_2(\tilde{u}_1 t_1) I_1 \rho_2(\tilde{u}_2), \quad \tilde{M}_4 = \rho_2(\psi(\tilde{u}_2) t_1) I_1 \rho_2(\psi(\tilde{u}_1)).$$

We have $\tilde{u}_1 - v_1 = \sum_{i=1}^{n_1} \frac{\pi^{i_0, j_0}_1(\tilde{M}_1)}{\pi^{i_0, j_0}_1(\tilde{M}_3)} v_i$ and $\tilde{u}_2 - v_1 = \sum_{i=1}^{n_1} \frac{\pi^{i_0, j_0}_1(\tilde{M}_2)}{\pi^{i_0, j_0}_1(\tilde{M}_4)} v_i$.

Moreover, let V_0 be the subspace of $V_{\mathcal{L}}$ spanned by $\{v_2', v_3', \ldots, v_{n_2}'\}$ and V_{0^*}' be the subspace of $V_{\mathcal{L}}^*$ spanned by $\{v_2^*, v_3^*, \ldots, v_{n_2}^*\}$. Then we have $u \cdot V_0 \subset V_0^*$ for all $u \in U^- \cup U^+$ and $u' \in V_{0^*}^*$ for all $u' \in U^+$.

Thus for all $i = 1, 2, \ldots, n_2$,
\[
\pi^2_{i,1}(M_2) = \pi^2_{i,1}(\rho_2(\tilde{u}_1 t_1) I_2 \rho_2(\tilde{u}_2)) + \pi^2_{i,1}(\rho_2(\tilde{u}_1 t_1)(I_L - I_2)\rho_2(\tilde{u}_2))
= \pi^2_{i,1}(\rho_2(\tilde{u}_1 t_1) I_2 \rho_2(\tilde{u}_2)).
\]

So $\tilde{u}_1 \cdot v'_1 = \sum_{i=1}^{n_2} \pi^2_{i,1}(M_2) v'_i$ and $\psi(\tilde{u}_2) \cdot v'_1 = \sum_{i=1}^{n_2} \pi^2_{i,1}(M_2) v'_i$. By [L2, 5.4], we have $\tilde{u}_1, \psi(\tilde{u}_2) \in U_{>0}$. Therefore to prove that $z \in Z_{J,>0}$, it is enough to prove that $t_1 \in T_{>0}Z(L)$, where $Z(L)$ is the center of L.

For any $g \in (U^-, U^+) \cdot \hat{T}$, g can be expressed in a unique way as $g = (u_1, u_2) \cdot t$, for some $u_1 \in U^-$, $u_2 \in U^+$, $t \in \hat{T}$. Now define $\pi_T : (U^-, U^+) \cdot \hat{T} \to \hat{T}$ by $\pi_T((u_1, u_2) \cdot t) = t$ for all $u_1 \in U^-$, $u_2 \in U^+$, $t \in \hat{T}$. Note that $(U^-, U^+) \cdot \hat{T} \cap G_{>0}$ is the closure of $G_{>0}$ in $(U^-, U^+) \cdot \hat{T}$. Then $\pi_T((U^-, U^+) \cdot \hat{T} \cap G_{>0})$ is contained in the closure of $T_{>0} \cap \hat{T}$. In particular, $\pi_T(z) = t_1 t_J$ is contained in the closure of $T_{>0}$ in \hat{T}. Therefore for any $j \in J$, $\alpha_j(t_1) > 0$. Now let t_2 be the unique element in T such that
\[
\alpha_j(t_2) = \begin{cases}
\alpha_j(t_1), & \text{if } j \in J; \\
\alpha_j(t_1)^2, & \text{if } j \notin J.
\end{cases}
\]

Then $t_2 \in T_{>0}$ and $t_2^{-1} t_1 \in Z(L)$. The theorem is proved. \qed

Remark. Theorem 2.7 is analogous to the following statement in [L4, 5.4]: Assume that G is simply laced and V is the irreducible representation of G with the highest weight λ, where λ is a dominant and regular weight of G. For any $g \in G$, let $M(g)$ be the matrix of $g : V \to V$ with respect to the canonical basis of V. Then for any $g \in G$, $g \in G_{>0}$ if and only if $M(g)$ and $M(\psi(g))$ are matrices with all the entries in $R_{>0}$.

2.8. Before proving Corollary 2.9, I will introduce some technical tools.

Since G is adjoint, there exists (in an essentially unique way) \hat{G} with the epinglage $(\hat{T}, \hat{B}^+, \hat{B}^-, \hat{x}_i, \hat{y}_i; i \in \hat{I})$ and an automorphism $\sigma : \hat{G} \to G$ (over R) such that the following conditions are satisfied.

(a) \hat{G} is connected semisimple adjoint algebraic group defined and split over R.
(b) \hat{G} is simply laced.
(c) σ preserves the epinglage, that is, $\sigma(\hat{T}) = \hat{T}$ and there exists a permutation $\hat{i} \to \sigma(\hat{i})$ of \hat{I}, such that $\sigma(\hat{x}_i(a)) = \hat{x}_{\sigma(i)}(a), \sigma(\hat{y}_i(a)) = \hat{y}_{\sigma(i)}(a)$ for all $i \in \hat{I}$ and $a \in R$.
(d) If $\hat{i}_1 \neq \hat{i}_2$ are in the same orbit of $\sigma : \hat{I} \to \hat{I}$, then \hat{i}_1, \hat{i}_2 do not form an edge of the Coxeter graph.
(e) \hat{i} and $\sigma(\hat{i})$ are in the same connected component of the Coxeter graph, for any $\hat{i} \in \hat{I}$.
(f) There exists an isomorphism $\phi : \hat{G}^\sigma \to G$ (as algebraic groups over R) which is compatible with the epinglage of G and the epinglage $(\hat{T}^\sigma, \hat{B}^+, \hat{B}^-, \hat{x}_p, \hat{y}_p; p \in \hat{I})$ of \hat{G}^σ, where \hat{I} is the set of orbit of $\sigma : \hat{I} \to \hat{I}$ and $\hat{x}_p(a) = \prod_{i \in p} \hat{x}_i(a), \hat{y}_p(a) = \prod_{i \in p} \hat{y}_i(a)$ for all $p \in \hat{I}$ and $a \in R$.

Let λ be a dominant and regular weight of \hat{G} and (V, ρ) be the irreducible representation of \hat{G} with highest weight λ. Let \tilde{G} be the closure of $\{[\rho(g)] \mid \hat{g} \in \hat{G}\}$ in $P(\text{End}(V))$ and \tilde{G}^σ be the closure of $\{[\rho(\hat{g})] \mid \hat{g} \in \hat{G}^\sigma\}$ in $P(\text{End}(V))$. Then since λ is a dominant and regular weight of \tilde{G} and $\lambda |_{T^\sigma}$ is a dominant and regular weight
of \tilde{G}^σ, we have that \tilde{G} is the De Concini-Procesi compactification of \tilde{G} and \tilde{G}^σ is the De Concini-Procesi compactification of \tilde{G}^σ. Since \tilde{G} is closed in $P(\text{End}(V))$, \tilde{G}^σ is the closure of $\{ [\rho(\tilde{g})] \mid \tilde{g} \in \tilde{G} \}$ in \tilde{G}.

We have $\tilde{G} = \bigcup_{J \subseteq I} \tilde{Z}_J = \bigcup_{J \subseteq I} (\tilde{G} \times \tilde{G}) \cdot \tilde{z}_J^0$ and $\tilde{G}^\sigma = \bigcup_{J \subseteq I, \sigma J = J} (\tilde{G}^\sigma \times \tilde{G}^\sigma) \cdot \tilde{z}_J^0$.

Moreover, σ can be extended in a unique way to an automorphism $\tilde{\sigma}$ of \tilde{G}. Since $\tilde{G}^\sigma = \bigcup_{J \subseteq I, \sigma J = J} (\tilde{Z}_J)^\sigma$ is a closed subset of \tilde{G} containing \tilde{G}^σ, we have $\tilde{G}^\sigma \subseteq \bigcup_{J \subseteq I, \sigma J = J} (\tilde{Z}_J)^\sigma$.

By the condition (f), there exists a bijection ϕ between \bar{I} and I, such that $\phi(\tilde{x}_p(a)) = x_{\phi(p)}(a)$, for all $p \in \bar{I}, a \in \mathbb{R}$. Moreover, the isomorphism ϕ from \tilde{G}^σ to G can be extended in a unique way to an isomorphism $\tilde{\phi} : \tilde{G}^\sigma \to \tilde{G}$. It is easy to see that for any $J \subseteq \bar{I}$ with $\sigma J = J$, we have $\tilde{\phi}((\tilde{G}^\sigma \times \tilde{G}^\sigma) \cdot \tilde{z}_J^0) = Z_{\phi \sigma(J)}$, where $\pi : \bar{I} \to I$ is the map sending element of \bar{I} into the σ-orbit that contains it.

Corollary 2.9. $Z_{J, > 0} = \bigcap_{g_1, g_2 \in G_{>, 0}} (g_1^{-1}, g_2) \cdot Z_{J, > 0}$ is the closure of $Z_{J, > 0}$ in Z_J.

As a consequence, $Z_{J, > 0}$ and $\tilde{G}_{>, 0}$ are contractible.

Proof. I will prove that $Z_{J, > 0} \subseteq \bigcap_{g_1, g_2 \in G_{>, 0}} (g_1^{-1}, g_2) \cdot Z_{J, > 0}$.

First, assume that G is simply laced.

For any $g \in G_{>, 0}$, $i_J(g) = ([\rho_1(g)], [\rho_2(g)])$, where $\rho_1(g)$ and $\rho_2(g)$ are matrices with all the entries in $\mathbb{R}_{>, 0}$. Then for any $z \in Z_{J, > 0}$, we have $i_J(z) = [[M_1], [M_2]]$ for some matrices with all the entries in $\mathbb{R}_{>, 0}$. Similarly, $i_J(\tilde{z}(z)) = [[M_3], [M_4]]$ for some matrices with all their entries in $\mathbb{R}_{>, 0}$.

Note that for any $M_1', M_2', M_3' \in gl(n)$ such that M_1', M_3' are matrices with all their entries in $\mathbb{R}_{>, 0}$ and M_2' is a nonzero matrix with all the entries in $\mathbb{R}_{>, 0}$, we have that $M_1' M_2' M_3'$ is a matrix with all the entries in $\mathbb{R}_{>, 0}$. Thus for any $g_1, g_2 \in G_{>, 0}$, we have that $(g_1, g_2^{-1}) \cdot z$ satisfies the condition (*) in 2.7. Moreover, $(g_1, g_2^{-1}) \cdot z \in Z_{J, > 0}$, therefore by 2.7, $(g_1, g_2^{-1}) \cdot z \in Z_{J, > 0}$ for all $g_1, g_2 \in G_{>, 0}$.

In the general case, we will keep the notation of 2.8. Since the isomorphism $\phi : \tilde{G}^\sigma \to G$ is compatible with the épínglages, we have $\phi((\tilde{U}_{>, 0})^\sigma) = U_{>, 0}, \phi((\tilde{T}_{>, 0})^\sigma) = T_{>, 0}$ and $\phi((\tilde{G}_{>, 0})^\sigma) = G_{>, 0}$. Now for any $z \in Z_{J, > 0}$, z is contained in the closure of $G_{>, 0}$ in \tilde{G}. Thus $\tilde{\phi}^{-1}(z)$ is contained in the closure of $(\tilde{G}_{>, 0})^\sigma$ in \tilde{G}, hence contained in the closure of $(\tilde{G}_{>, 0})^\sigma$ in \tilde{G}. Therefore, $\tilde{\phi}^{-1}(z) \in \tilde{Z}_{J, > 0}$, where $J = \pi^{-1} \circ \phi^{-1}(J)$.

For any $\tilde{g}_1, \tilde{g}_2 \in (\tilde{G}_{>, 0})^\sigma$, we have $(\tilde{g}_1, \tilde{g}_2^{-1}) \cdot \tilde{\phi}^{-1}(z) = (\tilde{u}_1 \tilde{t}, \tilde{u}_2^{-1}) \cdot \tilde{z}_J^0$ for some $\tilde{u}_1 \in \tilde{U}_{>, 0}, \tilde{u}_2 \in \tilde{U}_{>, 0}, \tilde{t} \in \tilde{T}_{>, 0}$. Since $\tilde{\phi}^{-1}(z) \in (\tilde{G})^\sigma$, we have $(\tilde{g}_1, \tilde{g}_2^{-1}) \cdot \tilde{\phi}^{-1}(z) \in (\tilde{Z}_{J, > 0})^\sigma$. Then

$$\tilde{\sigma}((\tilde{u}_1 \tilde{t}, \tilde{u}_2^{-1}) \cdot \tilde{z}_J^0) = (\sigma(\tilde{u}_1 \tilde{t}), \sigma(\tilde{u}_2^{-1})) \cdot \tilde{\sigma}(\tilde{z}_J^0) = (\sigma(\tilde{u}_1)\sigma(\tilde{t}), \sigma(\tilde{u}_2^{-1})) \cdot \tilde{z}_J^0 = (\tilde{u}_1 \tilde{t}, \tilde{u}_2^{-1}) \cdot \tilde{z}_J^0.$$
roots of \(\tilde{G} \). Let \(\tilde{t}' \) be the unique element in \(\tilde{T} \) such that

\[
\tilde{\alpha}_j(\tilde{t}') = \begin{cases}
\tilde{\alpha}_j(\tilde{t}), & \text{if } \tilde{j} \in \tilde{J}; \\
1, & \text{otherwise}.
\end{cases}
\]

Then \(\tilde{t}' \in (\tilde{T}_c)_0 \) and \((\tilde{t},1) \cdot \tilde{z}_j^0 = (\tilde{t}',1) \cdot \tilde{z}_j^0 \). Thus \((\tilde{g}_1, \tilde{g}_2^{-1}) \cdot \tilde{\phi}^{-1}(z) = (\tilde{u}_1 \tilde{t}', \tilde{u}_2^{-1}) \cdot \tilde{z}_j^0 \). We have

\[
(\phi(\tilde{g}_1), \phi(\tilde{g}_2)^{-1}) \cdot z = \tilde{\phi}((\tilde{g}_1, \tilde{g}_2^{-1}) \cdot \tilde{\phi}^{-1}(z)) = \tilde{\phi}((\tilde{u}_1 \tilde{t}', \tilde{u}_2^{-1}) \cdot \tilde{z}_j^0) = (\phi(\tilde{u}_1)\tilde{\phi}(\tilde{t}'), \phi(\tilde{u}_2^{-1})) \cdot \tilde{z}_j^0 \in Z_{J,>0}.
\]

Since \(\phi((\tilde{G}_c)_0) = G_{>0} \), we have \(Z_{J,>0} \subset \bigcap_{g_1,g_2 \in G_{>0}} (g_1^{-1}, g_2) \cdot Z_{J,>0} \).

Note that \((1,1)\) is contained in the closure of \(\{ (g_1, g_2^{-1}) | g_1, g_2 \in G_{>0} \} \). Hence, for any \(z \in \bigcap_{g_1,g_2 \in G_{>0}} (g_1^{-1}, g_2) \cdot Z_{J,>0}, \) \(z \) is contained in the closure of \(Z_{J,>0} \). On the other hand, \(Z_{J,>0} \) is a closed subset in \(Z_J \). \(Z_{J,>0} \) contains \(Z_{J,>0} \), hence contains the closure of \(Z_{J,>0} \) in \(Z_J \). Therefore, \(Z_{J,>0} = \bigcap_{g_1,g_2 \in G_{>0}} (g_1^{-1}, g_2) \cdot Z_{J,>0} \) is the closure of \(Z_{J,>0} \) in \(Z_J \).

Now set \(g_r = \exp(\sum_{i \in \mathcal{J}} (e_i + f_i)) \), where \(e_i \) and \(f_i \) are the Chevalley generators related to our epinglage by \(x_i(1) = \exp(e_i) \) and \(y_i(1) = \exp(f_i) \). Then \(g_r \in G_{>0} \) for \(r \in R_{>0} \) (see [Li 5.9]). Define \(f : R_{>0} \times Z_{J,>0} \to Z_{J,>0} \) by \(f(r,z) = (g_r, g_r^{-1}) \cdot z \) for \(r \in R_{>0} \) and \(z \in Z_{J,>0} \). Then \(f(0,z) = z \) and \(f(1,z) \in Z_{J,>0} \) for all \(z \in Z_{J,>0} \).

Using the fact that \(Z_{J,>0} \) is a cell (see 2.6), it follows that \(Z_{J,>0} \) is contractible.

Similarly, define \(f' : R_{>0} \times \bar{G}_{>0} \to \bar{G}_{>0} \) by \(f'(r,z) = (g_r, g_r^{-1}) \cdot z \) for \(r \in R_{>0} \) and \(z \in \bar{G}_{>0} \). Then \(f'(0,z) = z \) and \(f'(1,z) \in \bigcup_{K \subset I} Z_{K,>0} \) for all \(z \in \bar{G}_{>0} \). Note that \(\bigcup_{K \subset I} Z_{K,>0} = (U_{>0} \cdot (U_{>0}^{1\cdot 1})) \cdot \bigcup_{K \subset I} (T_{>0},1) \cdot (z_K^{>0} \cong U_{>0} \times U_{>0}^{1\cdot 1}) \). Moreover, by [DP 2.2], we have \(\bigcup_{K \subset I} (T_{>0},1) \cdot z_K^{>0} \cong R_{>0}^1 \). Thus \(\bigcup_{K \subset I} Z_{K,>0} \cong R_{>0}^1 \cdot R_{>0}^1 \) is contractible. Therefore \(\bar{G}_{>0} \) is contractible.

3. THE CELL DECOMPOSITION OF \(Z_{J,>0} \)

3.1. For any \(P \in \mathcal{P}_J, Q \in \mathcal{P}_J^\star, B \in B \) and \(g_1 \in H_P, g_2 \in U_Q, g \in G \), we have \(\text{pos}(P^B, g_1g_2g (Q^B)) = \text{pos}(g_1^{-1}(P^B), g_2g (Q^B)) = \text{pos}(P^B, g (Q^B)) \). If moreover, \(P \models g Q \), then \(\text{pos}(P^B, g (Q^B)) = wu_0 \) for some \(w \in W_J \) (see 1.4). Therefore, for any \(v, v' \in W, w, w' \in W^J \) and \(y, y' \in W_J \) with \(v \leq w \) and \(v' \leq w' \), Lustig introduced the subset \(Z_{J,v,w,v',w',y,y'} \) and \(Z_{J,>0,v,w,v',w',y,y'} \) of \(Z_J \) which are defined as follows:

\(Z_{J,v,w,v',w',y,y'} = \{(P,Q,H_PgU_Q) \in Z_J | \ P \in \mathcal{P}_v,w,w', \psi(Q) \in \mathcal{P}_v,w',w', \text{pos}(P^{B_v^w}, g (Q^{B_v^w})) = yw_0, \text{pos}(P^{B_v^w}, g (Q^{B_v^w})) = y'w_0 \} \)

and

\(Z_{J,>0,v,w,v',w',y,y'} = Z_{J,v,w,v',w',y,y'} \cap Z_{J,>0} \).
Then
\[Z_J = \bigcup_{v, v' \in W, w, w' \in W^J, y, y' \in W_J} Z_{J, > 0}^{v, w, v', w', y, y'}, \]
\[Z_{J, > 0} = \bigcup_{v, v' \in W, w, w' \in W^J, y, y' \in W_J} Z_{J, > 0}^{v, w, v', w', y, y'}. \]

Lusztig conjectured that for any \(v, v' \in W, w, w' \in W^J, y, y' \in W_J \) such that \(v \leq w, v' \leq w' \), \(Z_{J, > 0}^{v, w, v', w', y, y'} \) is either empty or a semi-algebraic cell. If it is nonempty, then it is also a connected component of \(Z_{J, > 0}^{v, w, v', w', y, y'} \).

In this section, we will prove this conjecture. Moreover, we will show exactly when \(Z_{J, > 0}^{v, w, v', w', y, y'} \) is nonempty and we will give an explicit description of \(Z_{J, > 0}^{v, w, v', w', y, y'} \).

First, I will prove some elementary facts about the total positivity of \(G \).

Proposition 3.2. For any \(v, v' \in W, w, w' \in W^J \) such that \(v \leq w, v' \leq w' \), set
\[Z_J^{v, w, v', w', y, y'} = \bigcup_{y, y' \in W_J} Z_{J, > 0}^{v, w, v', w', y, y'}, \]
and \(Z_{J, > 0}^{v, w, v', w', y, y'} = \bigcup_{y, y' \in W_J} Z_{J, > 0}^{v, w, v', w', y, y'} \). We will give a characterization of \(z \in Z_{J, > 0}^{v, w, v', w', y, y'} \) in 3.5.

Lemma 3.3. For any \(w \in W, u \in U_{\geq 0}, \{ \pi_U u_1 u \mid u_1 \in U_{w, > 0}^+ \} = U_{w, > 0}^+ \).

Proof. The following identities hold (see [21. 1.3]):
(a) \(t x_i(a) = x_i(a_i(t)a)t, t y_i(a) = y_i(a_i(t)^{-1}a)t \) for all \(i, t \in T, a \in R \).
(b) \(y_i(a)x_{i+1}(b) = x_{i+1}(b)y_i(a) \) for all \(a, b \in R \) and \(i_1 \neq i_2 \).
(c) \(x_i(a)y_i(b) = y_i(b)(\frac{b}{1-ta})a_i(y_i(\frac{a}{1-ta}))x_i(a)(\frac{a}{1-ta}) \) for all \(a, b \in R_{\geq 0}, i \in I \).

Thus \(U_{w, > 0}^+ U_{w, > 0}^- \subset U_{w, > 0}^+ T_{w, > 0} U_{w, > 0}^+ \) for \(w \in W \). So we only need to prove that
\[U_{w, > 0}^+ \subset \{ \pi_U u_1 u \mid u_1 \in U_{w, > 0}^+ \}. \]
Now I will prove the following statement:
\[\{ \pi_U u_1 u_1(a) \mid u_1 \in U_{w, > 0}^+ \} = U_{w, > 0}^+ \text{ for } i \in I, a \in R_{\geq 0}. \]

We argue by induction on \(l(w) \). It is easy to see that the statement holds for \(w = 1 \). Now assume that \(w \neq 1 \). Then there exist \(j \in I \) and \(w_1 \in W \) such that \(w = s_j w_1 \) and \(l(w_1) = l(w) - 1 \). For any \(u_1' \in U_{w, > 0}^+ \), we have \(u_1' = u_{2}u_{3} \) for some \(u_{2} \in U_{s_j, > 0}^+ \).
and $u'_1 \in U^+_{w_1,>0}$. By induction hypothesis, there exists $u_3 \in U^+_{w_1,>0}$, $u' \in U^-$ and $t \in T$ such that $u_3 y_i(a) = u'tu'_3$. Since $U^+_{w,>0}U^-_{s,>0} \subset U^-_{s,>0}T_0U^+_{w,>0}$, we have $u' \in U^-_{s,>0}$ and $t \in T_{>0}$.

Now by (a), we have $tu'_3t^{-1} \in U^+_{s_1,>0}$. So by (b) and (c), there exists $u_2 \in U^+_{s_1,>0}$ such that $\pi_{U^+}(u_2u') = tu'_3t^{-1}$. Thus

$$\pi_{U^+}(u_2u_3y_i(a)) = \pi_{U^+}(u_2u')(u'u_3y_i(a)) = \pi_{U^+}(\pi_{U^+}(u_2u')u'u_3y_i(a)) = \pi_{U^+}(tu'_3t^{-1}u_3) = \pi_{U^+}(tu'_2u'_3) = u'_1.$$

So $u'_1 \in \{\pi_{U^+}(u_1y_i(a)) \mid u_1 \in U^+_{w,>0}\}$. The statement is proved.

Now assume that $u \in U^-_{w',>0}$. I will prove the lemma by induction on $l(u')$. It is easy to see that the lemma holds for $u' = 1$. Now assume that $u' \neq 1$. Then there exist $i \in I$ and $w'_1 \in W$ such that $l(w'_1) = l(u') - 1$ and $w'_1 = s_iw'_1$. We have $u = y_i(a)u'$ for some $a \in \mathbb{R}_{>0}$ and $u' \in U^-_{w_1,>0}$. So

$$\{\pi_{U^+}(u_1u) \mid u_1 \in U^+_{w,>0}\} = \{\pi_{U^+}(u_1y_i(a)u') \mid u_1 \in U^+_{w,>0}\} = \{\pi_{U^+}(\pi_{U^+}(u_1y_i(a)))u' \mid u_1 \in U^+_{w,>0}\} = \{\pi_{U^+}(u'_1u') \mid u'_1 \in U^+_{w,>0}\}.$$

By induction hypothesis, we have

$$\{\pi_{U^+}(u_1u) \mid u_1 \in U^+_{w,>0}\} = \{\pi_{U^+}(u'_1u') \mid u'_1 \in U^+_{w,>0}\} = U^+_{w,>0}.$$

\[\square\]

Lemma 3.4. Set $Z^1_{J,>0} = \{(g_1, g_2^{-1}) \cdot z^1_j \mid g_1 \in U^-_{>0}T_{>0}, g_2 \in U^+_{>0}\}$. Then

(a) $Z_{J,>0} = \bigcup_{u_1 \in U^+_{w_0}, u_2 \in U^-_{w_0}} (u_1^{-1}, u_2) \cdot Z^1_{J,>0}$.

(b) $Z_{J,>0} = \bigcup_{u_1, u_2 \in W_J} \{(u_1P_J, u_2) \cdot Q_J, u_1HP_JUQ_Ju_2 \mid u_1 \in U^+_{w_1,>0}, u_2 \in U^+_{w_2,>0}, l \in L_{>0}\} = \{(P, Q, \gamma) \in Z_{J,>0} \mid P = u_1P_J, \psi(Q) = u_2P_J \text{ for some } u_1, u_2 \in U^-_{>0}\}$.

Proof. (a) By 2.9 and 3.2, we have

$$Z_{J,>0} = \bigcup_{g_1, g_2 \in G_{>0}} (g_1^{-1}, g_2) \cdot Z_{J,>0} = \bigcup_{t_1, t_2 \in T_{>0}} \bigcup_{u_1, u_2 \in U^+_{w_0}} (u_1^{-1}u_3^{-1}t_1^{-1}, u_4u_2t_2) \cdot Z_{J,>0} = \bigcup_{u_1 \in U^+_{w_0}, u_4 \in U^-_{w_0}} (u_1^{-1}, u_4) \cdot \bigcup_{u_2 \in U^+_{w_0}, u_3 \in U^-_{w_0}} (u_2^{-1}, u_3) \cdot \bigcup_{t_1, t_2 \in T_{>0}} (t_1^{-1}, t_2) \cdot Z_{J,>0} = \bigcup_{u_1 \in U^+_{w_0}, u_4 \in U^-_{w_0}} (u_1^{-1}, u_4) \cdot \bigcup_{u_2 \in U^+_{w_0}, u_3 \in U^-_{w_0}} (u_2^{-1}, u_3) \cdot Z_{J,>0} = \bigcup_{u_1 \in U^+_{w_0}, u_4 \in U^-_{w_0}} (u_1^{-1}, u_4) \cdot \bigcup_{u_2 \in U^+_{w_0}, u_3 \in U^-_{w_0}} (u_2^{-1}u_3^{-1}t_1^{-1}, u_4u_2t_2) \cdot Z_{J,>0} = \bigcup_{u_1 \in U^+_{w_0}, u_4 \in U^-_{w_0}} (u_1^{-1}, u_4) \cdot \bigcup_{u_2 \in U^+_{w_0}, u_3 \in U^-_{w_0}} (u_2^{-1}U^-_{>0}T_{>0}, u_3^{-1}) \cdot Z_{J,>0} = \bigcup_{u_1 \in U^+_{w_0}, u_4 \in U^-_{w_0}} (u_1^{-1}, u_4) \cdot \bigcup_{u_2 \in U^+_{w_0}, u_3 \in U^-_{w_0}} (u_2^{-1}U^-_{>0}T_{>0}, U^+_{>0}u_3^{-1}) \cdot z^0_j = \bigcup_{u_1 \in U^+_{w_0}, u_4 \in U^-_{w_0}} (u_1^{-1}, u_4) \cdot \bigcup_{u_2 \in U^+_{w_0}, u_3 \in U^-_{w_0}} (U^-_{>0}T_{>0}, U^+_{>0}u_3^{-1}) \cdot z^0_j.$$
(b) For any \(u \in U^-_\infty, v \in U^+_\infty, t \in T_\infty \), there exist \(w_1, w_2 \in W^J, w_3, w_4 \in W^J \), such that \(u = u_1 u_3 \) for some \(u_1 \in U^-_\infty, u_3 \in U^-_\infty \) and \(v = u_4 u_2 \) for some \(u_2 \in U^+_w, u_4 \in U^-_w \). Then \((u t, v^{-1}) \cdot z^o_j = (u_1 P_J, u_2^{-1} Q_J, u_1 H_{P_J}, u_3 u_4 U_{Q_J}, u_2)\). On the other hand, assume that \(l \in L_\infty \), then \(l = u_3 u_4 \) for some \(u_3 \in U^-_\infty, u_4 \in U^+_\infty, t \in T_\infty \). Thus for any \(u_1 \in U^-_\infty, u_2 \in U^+_\infty \), we have

\[
(u_1 P_J, u_2^{-1} Q_J, u_1 H_{P_J}, u_3 u_4 U_{Q_J}, u_2) = (u_1 u_3 l, u_2^{-1} u_4^{-1}) \cdot z^o_j \in Z^1_{J,>0}.
\]

Therefore,

\[
Z^1_{J,>0} = \bigcup_{u_1, u_2 \in W^J} \{(u_1 P_J, u_2^{-1} Q_J, u_1 H_{P_J}, u_3 u_4 U_{Q_J}, u_2) \mid u_1 \in U^-_{J,>0}, u_2 \in U^+_{J,>0}, l \in L_\infty\}
\]

Note that \(\{u P_J \mid u \in U^-_\infty\} = \bigcup_{w \in W^J} \{u P_J \mid u \in U^-_w\} \). Now assume that \(z = (u_1 P_J, u_2^{-1} Q_J, u_1 H_{P_J}, u_3 u_4 U_{Q_J}, u_2) \) for some \(w_1, w_2 \in W^J \) and \(u_1 \in U^-_{w_1}, u_2 \in U^-_{w_2}, u_2 \in U^+_{w_2}, l \in L \). To prove that \(z \in Z^1_{J,>0} \), it is enough to prove that \(l \in L_\infty Z(L) \).

By part (a), for any \(u_3, u_4 \in U^+_{J,>0} \),

\[
(u_3, \psi(u_4)^{-1}) \cdot z = (u_3 u_1 P_J, \psi(u_2 u_4)^{-1} Q_J, u_3 u_1 H_{P_J}, u_3 U_{Q_J}, \psi(u_4 u_2)) \in Z^1_{J,>0}.
\]

Note that \(u_3 u_1 = u'_1 t_1 \pi_{U^+J}(u_3 u_1) \) for some \(u'_1 \in U^+_{w_1,>0}, t_1 \in T_\infty \) and \(u_4 u_2 = u'_2 t_2 \pi_{U^+J}(u_4 u_2) \) for some \(u'_2 \in U^{-w_2,>0}, t_2 \in T_\infty \). So we have \(u_3 u_1 P_J = u'_1 P_J, u_4 u_2 \) \(\psi(u_2 u_4)^{-1} Q_J = \psi(u_2)^{-1} Q_J \) and

\[
u_3 u_1 H_{P_J}, u_3 U_{Q_J}, \psi(u_4 u_2) = u'_1 \pi_{U^+J}(u_3 u_1) H_{P_J}, u_3 U_{Q_J}, \psi(\pi_{U^+J}(u_4 u_2)) t_2 \psi(u_2)\]

\[
= u'_1 H_{P_J}, t_1 \pi_{U^+J}(u_3 u_1) \psi(\pi_{U^+J}(u_4 u_2)) t_2 U_{Q_J}, \psi(u_2).
\]

Then \(t_1 \pi_{U^+J}(u_3 u_1) \psi(\pi_{U^+J}(u_4 u_2)) t_2 \in L_\infty Z(L) \). Since \(t_1, t_2 \in T_\infty \), we have \(\pi_{U^+J}(u_3 u_1) \psi(\pi_{U^+J}(u_4 u_2)) \in L_\infty Z(L) \) for all \(u_3, u_4 \in U^+_{J,>0} \). By 1.8 and 3.3, \(\pi_{U^+J}(u_3 u_1) \psi(\pi_{U^+J}(u_4 u_2)) = \pi_{U^+J}(u_3 u_1) U_{w_2,>0} \psi(u_4 u_2) \). Thus

\[
\pi_{U^+J}(U_{w_2,>0}) = \pi_{U^+J}(u_3 u_1) U_{w_2,>0} \psi(u_4 u_2) = U_{w_2,>0} \psi(u_4 u_2).
\]

Similarly, we have \(\pi_{U^+J}(U_{w_2,>0} u_2) = U_{w_2,>0} \psi(u_4 u_2) \).

The lemma is proved.

\begin{proposition}
Let \(z \in Z^1_{J,>0} \), then \(z \in Z^1_{J,>0} \) if and only if for any \(u_1 \in U_{v^{-1},>0}, u_2 \in U_{v^{-1},>0} \), \(z \in Z^1_{J,>0} \).
\end{proposition}

\begin{proof}
Assume that \(z \in \bigcap_{u_1, u_2 \in U_{v^{-1},>0} \in U_{v^{-1},>0}} (u_1, \psi(u_2)^{-1}) \cdot z \in Z^1_{J,>0} \).
\end{proof}
On the other hand, assume that $z = (P, Q, \gamma) \in Z_t^{v, w, v', w'}$. By 3.4(a), for any $u_1 \in U_{v_1, v', w'}^+ \cap U_{w_1, w, v}^+$ we have $(u_1, \psi(u_2^{-1})) \cdot z \in Z_{J, \geq 0}$. Moreover, we have $u_1 P = u_1' P_j$ for some $u_1' \in U_{w, > 0}$ (see 1.6). Similarly, we have $\psi(u_2^{-1}) Q = u_2' \psi(Q) = u_1' P_j$ for some $u_2' \in U_{w, > 0}$. By 3.4(b), $(u_1, \psi(u_2^{-1})) \cdot z \in Z_{J, \geq 0}$. □

3.6. Now I will fix $w \in W$ and a reduced expression $w = (w_0, w_1, \ldots, w_n)$ of w. Assume that $w_{(j)} = w_{(j-1)} s_{(j)}$ for all $j = 1, 2, \ldots, n$. Let $v \leq w$ and let $v_+ = (v_0, v_1, \ldots, v(n))$ be the positive subexpression of w.

Define

$$G_v, w = \left\{ g = g_1 g_2 \cdots g_k \mid g_j = y_i(a_j) \text{ for } a_j \in R - \{0\}, \quad \begin{array}{ll}
& v = v_0, \\
& v = v_{(j-1)} < v_{(j)}.
\end{array} \right\}$$

$$G_v, w, > 0 = \left\{ g = g_1 g_2 \cdots g_k \mid g_j = y_i(a_j) \text{ for } a_j \in R_{> 0}, \quad \begin{array}{ll}
& v = v_0, \\
& v = v_{(j-1)} < v_{(j)}.
\end{array} \right\}$$

Marsh and Rietsch have proved that the morphism $g \rightarrow g B^+$ maps $G_{v, w}$ into $R_{v, w}$ (see [MR, 5.2]) and $G_{v, w}, > 0$ bijectively onto $R_{v, w, > 0}$ (see [MR, 11.3]).

The following proposition is a technical tool needed in the proof of the main theorem.

Proposition 3.7. For any $g \in G_{v, w}, > 0$, we have

$$\bigcap_{u \in U_{w, > 0}} (\pi_{U_{J}}(u g))^{-1} \cdot U_{w, > 0, \geq 0} = \begin{cases}
U_{w, > 0}, & \text{if } v \in W^J; \\
\emptyset, & \text{otherwise}.
\end{cases}$$

The proof will be given in 3.13.

Lemma 3.8. Suppose α_{i_0} is a simple root such that $v_i^{-1} \alpha_{i_0} > 0$ for $v \leq v_i \leq w$. Then for all $g \in G_{v, w}, > 0$ and $a \in R$, we have $x_{i_0}(a) g = g t g'$ for some $t \in T_{> 0}$ and $g' \in \prod_{\alpha \in R(v)} U_\alpha \cdot (v^{-1} x_{i_0}(a) v)$, where $R(v) = \{ \alpha \in \Phi^+ \mid v \alpha \in -\Phi^+ \}$.

Proof. Marsh and Rietsch proved in [MR, 11.8] that g is of the form

$$g = \left(\prod_{i \in \Delta_+} y_{(j)} t_j \right) v$$

and $v_{(j-1)} \alpha_i \neq \alpha_{i_0}$, for all $j = 1, 2, \ldots, n$. Thus $g = g_1 v$ for some

$$g_1 \in \prod_{\alpha \in \Phi^+-\{\alpha_{i_0}\}} U_{-\alpha}.$$

Set $T_1 = \{ t \in T \mid \alpha_{i_0}(t) = 1 \}$, then $T_1 \prod_{\alpha \in \Phi^+-\{\alpha_{i_0}\}} U_{-\alpha}$ is a normal subgroup of $\psi(P_{i_0})$. Now set $x = x_{i_0}(a)$, then $x g_1 x^{-1} \in B^-$. We may assume that $x g_1 x^{-1} = u_1 t_1$ for some $u_1 \in U^-$ and $t_1 \in T$. Now $x g_1 x^{-1} v = u_1 v_1 (v^{-1} t_1 v) (v^{-1} x v)$. Moreover, by [MR, 11.8], $x g \in g B^+$. Thus $x g = g_1 t_2 g_2 g_3 = g_1 (v t_2 g_2) (v^{-1}) t_2 g_3$, for some $t_2 \in T$, $g_2 \in \prod_{\alpha \in R(v)} U_\alpha$ and $g_3 \in \prod_{\alpha \in \Phi^+-R(v)} U_\alpha$. Note that $g_1 (v t_2 g_2) (v^{-1}) t_1 \in U^-$, $t_2, t_1 t_2 v \in T$ and $g_3, v^{-1} x v \in \prod_{\alpha \in \Phi^+-R(v)} U_\alpha$. Thus $g_1 (v t_2 g_2) (v^{-1}) t_1 = u_1$, $t_2 = v^{-1} t_1 v$ and $g_3 = v^{-1} x v$. Note that $g^{-1} x_0(b) g \in B^+$ for $b \in R$ (see [MR, 11.8]). We have that $\pi_T(g^{-1} x_0(b) g) \mid b \in R$ is connected and contains $\pi_T(g^{-1} x_0(0) g) = 1$. Hence $\pi_T(g^{-1} x_0(b) g) \in T_{> 0}$ for $b \in R$.

In particular, $\pi_T(g^{-1}xg) = t_2 \in T_{>0}$. Therefore $xg = gt_2g'$ with $t_2 \in T_{>0}$ and $g' = \alpha g \beta = \prod_{\alpha \in R(v)} U_\alpha \cdot (\dot{w}^{-1}x\dot{v})$.

\textbf{Remark.} In \cite{MR} 11.9, Marsh and Rietsch pointed out that for any $j \in J^{v}_{X}$, we have $\omega^{-1}\alpha_j > 0$ for all $v_{(j)}^{-1}v \leq u \leq w_{(j)}^{-1}w$.

3.9. Suppose that $J^{v}_{X_j} = \{j_1, j_2, \ldots, j_k\}$, where $j_1 < j_2 < \cdots < j_k$ and $g = g_1g_2 \cdots g_k$, where

$$g_j = \begin{cases} (y_j(a_j) \text{ for } a_j \in R_{>0}, & \text{if } j \in J^v_{X_j}; \\ s_j, & \text{if } j \in J^v_{X_j}. \end{cases}$$

For any $m = 1, \ldots, k$, define $v_m = v_{(j_m)}^{-1}v$, $g_m = g_{j_1+1}g_{j_2+2} \cdots g_m$ and $f_m(a) = g_{(m)}^{-1}x_{ij_m}(-a)g_{(m)} \in B^+$ (see \cite{MR} 11.8). Now I will prove the following lemma.

\textbf{Lemma 3.10.} Keep the notation in 3.9. Then

(a) For any $u \in U^+_{v_{i-1,j_0}}$, $ug = g'tu'$ for some $g' \in U^{-}_{w_{i,j_0}}$, $t \in T_{>0}$ and $u' \in U^+$.

(b) $\pi_T(U^+_{v_{i-1,j_0}}) = \{\pi_T(f_k(a_k)f_{k-1}(a_{k-1}) \cdots f_1(a_1)) | a_1, a_2, \ldots, a_k \in R_{>0}\}$.

\textbf{Proof.} I will prove the lemma by induction on $l(v)$. It is easy to see that the lemma holds when $v = 1$. Now assume that $v \neq 1$.

For any $u \in U^+_{v_{i-1,j_0}}$, since $B^+ \in \mathcal{R}_{v,w,>0}$, we have $ug \in \mathcal{R}_{v,w,>0}$. Thus $ug = g'tu'$ for some $g' \in U^{-}_{w_{i,j_0}}$, $t \in T$ and $u' \in U^+$. Set $y = g_1g_2 \cdots g_{j_{i-1}}$. Note that $y \in U_{>0}$, we have $uy = y'tu'$ for some $y' \in U^{-}$, $u' \in U^+_{v_{i-1,j_0}}$ and $t \in T_{>0}$. Hence $\pi_T(ug) = \pi_T(uy's_{j_i}g(1)) = \pi_T(y'tu's_{j_i}g(1)) \in T_{>0} \pi_T(u's_{j_i}g(1))$. To prove that $\pi_T(U^+_{v_{i-1,j_0}}) \subset T_{>0}$, it is enough to prove that $\pi_T(u's_{j_i}g(1)) \in T_{>0}$ for all $u \in U^+_{v_{i-1,j_0}}$.

For any $u \in U^+_{v_{i-1,j_0}}$, we have $u = u_1x_{ij_1}(a)$ for some $u_1 \in U^+_{v_{i-1,j_1}}, a \in R_{>0}$. It is easy to see that $x_{ij_1}(a)s_{j_1}g(1) = \alpha_{ij_1}(a)y_{ij_1}(a)x_{ij_1}(-a^{-1})g(1)$. Note that $\alpha_{ij_1}(a) \in T_{>0}$ and by 3.8, $g(1)^{-1}x_{ij_1}(a)x_{ij_1}(-a^{-1})g(1) \in T_{>0} U^+$. Hence by 1.7, we have

$$\pi_T(u's_{j_i}g(1)) = \pi_T(u_1\alpha_{ij_1}(a)y_{ij_1}(a)g(1)g(1)^{-1}x_{ij_1}(-a^{-1})g(1)) \in T_{>0} \pi_T(U^+_{v_{i-1,j_1}}, \rho_{ij_1,>0}y_{ij_1}(a)g(1))T_{>0}.$$

Set

$$w' = (1, w_{j_1-1}^{-1}w_{j_1}, \ldots, w_{j_1-1}^{-1}w_{n}),$$

$$v' = (1, s_{j_1}v_{j_1}, s_{j_1}v_{j_1+1}, \ldots, s_{j_1}v_{n}).$$

Then w' is a reduced expression of $w_{(j_1-1)}^{-1}w_{(n)}$ and v' is a positive subexpression of w'. For any $a \in R_{>0}$, $y_{ij_1}(a)g(1) \in G_{w',>,>0}$. Thus by induction hypothesis, for any $a \in R_{>0}$, $\pi_T(U^+_{v_{i-1,j_1},>0}y_{ij_1}(a)g(1)) \subset T_{>0}$. Therefore, $\pi_T(ug) \in T_{>0}$. Part (a) is proved.
Therefore, the referee pointed out to me that the assertion
exists also be proved using generalized minors.

Assume that there exist a \(t \in T_0 \) such that
\[\lim_{n \to \infty} t^n u^n t^n = 1. \]
Thus
\[\lim_{n \to \infty} t^n u^n t^n = u \in U_{\geq}^+. \]
Thus \(u = x_i(a) \) for some \(i \in I \) and \(a \in R_{\geq}. \)

\[\text{Remark. The referee pointed out to me that the assertion } t \in T_0 \text{ of 3.10(a) could also be proved using generalized minors.} \]

Lemma 3.11. Assume that \(\alpha \) is a positive root and \(u \in U_\alpha \), \(u' \in U^+ \) such that \(u'^n u' \in U_{\geq}^+ \) for all \(n \in N \). Then \(u = x_i(a) \) for some \(i \in I \) and \(a \in R_{\geq}. \)

Proof. There exists \(t \in T_0 \), such that \(\alpha_i(t) = 2 \) for all \(i \in I \). Then \(t u^{-1} = u^m \) for some \(m \in N \). By assumption, \(t^n u^n u' \in U_{\geq}^+ \) for all \(n \in N \). Thus
\[u(t^n u^n) = t^n (t^n u^n u') = \lim_{n \to \infty} t^n u^n t^n = 1. \]
Since \(U_{\geq}^+ \) is a closed subset of \(U^+ \), \(\lim_{n \to \infty} t^n u^n t^n = u \in U_{\geq}^+ \). Thus \(u = x_i(a) \) for some \(i \in I \) and \(a \in R_{\geq}. \)

Lemma 3.12. Assume that \(w \in W \) and \(i, j \in I \) such that \(w^{-1} \alpha_i = \alpha_j \). Then there exists \(c \in R_{\geq}, \) such that \(w^{-1} x_i(a) w = x_j(c) a \) for all \(a \in R \).

Proof. There exist \(c, c' \in R \setminus \{0\} \), such that \(y_i(a) w = wy_j(c') a \) and \(x_i(a) w = \dot{w} x_j(c) a \) for all \(a \in R \). Since \(\dot{w} B^- = B_{\geq} \), we have \(y_i(1) w B^+ = y_j(c') B^+ \in B_{\geq} \). By 3.6, \(c' > 0 \). Thus \(c' > 0 \). Moreover, since \(w a_j = \alpha_i > 0 \), we have \(w s_j w^{-1} = s_i \) and \(l(ws_j) = l(s_i w) = l(w) + 1 \). Hence, setting \(\dot{w}' = w s_j = s_i w, \) we have \(\dot{w}' = s_i \dot{w} = s_i \dot{w} = \dot{w} \). Therefore, \(c = c'^{-1} > 0 \).
3.13. Proof of Proposition 3.7. If \(v \in W^J \), then \(v \alpha > 0 \) for \(\alpha \in \Phi_+^J \). So
\[\pi_{U^+}^J(\prod_{\alpha \in R(v)} U_\alpha) = \{1\} \]. By 3.8, \(f_m(a) \in T(\prod_{\alpha \in R(v_m)} U_\alpha \cdot U_{v_m^{-1}\alpha^-}_m) \) for all \(m \in \{1, 2, \ldots, k\} \). Note that \(v_{\alpha > 0} \in -\Phi^+ \) for all \(\alpha \in R(v_m) \) and \(v_{v_m^{-1}\alpha^-}_m \in -\Phi^+ \). So \(f_m(a) \in T(\prod_{\alpha \in R(v)} U_\alpha) \pi_{k_1}(ak_1) \cdots \pi_{k_l}(ak_l) \) in
\[T(\prod_{\alpha \in R(v)} U_\alpha) \]. Hence by 3.10(b), \(\pi_{U^+}^J(ug) = 1 \) for all \(u \in U^+_{v^{-1}, > 0} \). Therefore
\[\bigcap_{u \in U^+_{v^{-1}, > 0}} (\pi_{U^+}^J(ug))^{-1} \cdot U^+_{w_d, > 0} = U^+_{w_d, > 0}. \]

If \(v \notin W^J \), then there exists \(\alpha \in \Phi_+^J \) such that \(v\alpha \in -\Phi^+ \), that is, \(v_{m^{-1}\alpha^-}_m \in \Phi_+^J \) for some \(m \in \{1, 2, \ldots, k\} \). Set \(k_0 = \max\{m \mid v_{m^{-1}\alpha^-}_m \in \Phi_+^J\} \). Then since
\[R(v_{k_0}) = \{v_{m^{-1}\alpha^-}_m \mid m > k_0\} \], we have that \(v_{k_0} \alpha > 0 \) for \(\alpha \in \Phi_+^J \). Hence by 3.8,
\[\pi_{U^+}^J(f_{k_0}(a)) = v_{k_0}^{-1}x_{i_{k_0}}(-1)v_{k_0}. \]
If \(u' \in \bigcap_{u \in U^+_{v^{-1}, > 0}} (\pi_{U^+}^J(ug))^{-1} \cdot U^+_{w_d, > 0} \), then
\[\pi_{U^+}^J(f_{k_0}(ak_1) \cdots f_{k_l}(ak_l))u' \in U^+_{w_d, > 0} \] for all \(a_1, a_2, \ldots, a_k \in \mathbb{R}_{> 0} \). Since
\[U^+_{w_d, > 0} \] is a closed subset of \(G \), \(\pi_{U^+}^J(f_{k_0}(ak_1) \cdots f_{k_l}(ak_l))u' \in U^+_{w_d, > 0} \) for all \(a \in \mathbb{R}_{> 0} \). Now take \(a_m = 0 \) for \(m \in \{1, 2, \ldots, k\} \). Then
\[\pi_{U^+}^J(f_{k_0}(a)u') \in U^+_{w_d, > 0} \] for all \(a \in \mathbb{R}_{> 0} \). Set \(u_1 = v_{k_0}^{-1}x_{i_{k_0}}(-1)v_{k_0} \). Then
\[u_0u' \in U^+_{w_d, > 0} \] for all \(u' \in U^+_{w_d, > 0} \). By 3.11, \(v_{k_0}^{-1}\alpha_{k_0} \) is \(\alpha_j' \) for some \(j \) in \(J \) and
\(u_1 = x_{j'}(-c) \) for some \(c \in \mathbb{R}_{> 0} \). That is a contradiction. The proposition is proved.

Let me recall that \(L = P_J \cap Q_J \) (see 2.4). Now I will prove the main theorem.

Theorem 3.14. For any \(v, w, v', w' \in W^J \) such that \(v \leq w, v' \leq w' \), set
\[\tilde{Z}_{v, w, v', w'}^J = \{ (9^J P_J, \psi(g)^{-1} Q_J, gH_{P_J} \cdot U_{Q_J} \psi(g) \mid g \in G_{v^+, w_0} \rangle \}. \]

Then
\[Z_{v, w, v', w'}^J = \begin{cases} \tilde{Z}_{v, w, v', w'}^J, & \text{if } v, w, v', w' \in W^J, v \leq w, v' \leq w'; \\ \emptyset, & \text{otherwise}. \end{cases} \]

Proof. Note that \(\{(P, Q, \gamma) \in Z_J \mid P \in P_{\geq 0}^J, \psi(Q) \in P_{\geq 0}^J \} \) is a closed subset
containing \(Z_{J, > 0} \). Hence it contains \(Z_{J, > 0} \). Now fix \(g \in G_{v^+, w_0} \rangle, g' \in G_{v^+, w_0} \rangle \) and
\(l \in L \). By 3.10(a), for any \(u \in U_{v^{-1}, > 0} \rangle, \)
\[u \in \psi(u')^{-1} Q_J, aH_{P_J} \cdot U_{Q_J} \psi(g') \]. We have
\[\begin{align*}
(u, \psi(u'))^{-1} \cdot z &= \left(a P_J, \psi(a')^{-1} Q_J, \psi(\pi_{U^+}(ug)H_{P_J} \cdot U_{Q_J} \psi(\pi_{U^+}(u'g')))t' \psi(a') \right) \\
&= \left(a P_J, \psi(a')^{-1} Q_J, aH_{P_J} \cdot \psi(\pi_{U^+}(ug))t' \psi(a') \right) \\
&= \left(a P_J, \psi(a')^{-1} Q_J, aH_{P_J} \cdot U_{Q_J} \psi(\pi_{U^+}(u'g')))t' \psi(a') \right).
\end{align*} \]

Then \((u, \psi(u')^{-1}) \cdot z \in Z_{J, > 0} \) if and only if
\[t \pi_{U^+}(ug) \psi(\pi_{U^+}(u'g')) \in L_{> 0} Z(L), \]
that is,
\[l \in \pi_{U^+} \pi_{U^+}^{-1} L_{> 0} Z(L) \psi(\pi_{U^+}(u'g'))^{-1} \]
\[= (\pi_{U^+} \pi_{U^+}^{-1} U_{w_d, > 0}) T_{> 0} Z(L) \psi(\pi_{U^+}(u'g'))^{-1} U_{w_d, > 0}). \]
So by 3.5, \(z \in Z_{J,0} \) if and only if
\[
l \in \bigcap_{u \in U^+_{v,>0}} \left(\pi_{U^+} \left(u g \right) \right)^{-1} U^+_{u_0,>0} T_{>0} Z(L) \psi \left(\pi_{U^+} \left(u' g' \right) \right)^{-1} U^+_{u_0',>0}.
\]

By 3.7, \(z \in Z_{I,0} \) if and only if \(v, v' \in W^J \) and \(l \in L_{>0} Z(L) \). The theorem is proved. \(\square \)

3.15. It is known that \(G_{>0} = \bigcup_{w,w' \in W} U_{w,>0} U_{w',>0} \), where for any \(w, w' \in W \), \(U_{w,>0} U_{w',>0} \) is a semi-algebraic cell (see [11 2.11]) and is a connected component of \(B^w B^+ \cap B^{-w'} B^- \) (see [FZ]). Moreover, Rietsh proved in [R2 2.8] that \(\mathcal{R}_{v,w} = \bigcup_{v \in w} \mathcal{R}_{v,w,>0} \), where for any \(v, w \in W \) such that \(v \leq w \), \(\mathcal{R}_{v,w,>0} \) is a semi-algebraic cell and is a connected component of \(\mathcal{R}_{v,w} \).

The following result generalizes these facts.

Corollary 3.16. \(\overline{G_{>0}} = \bigcup_{J \subset I} \bigcup_{v,w,v',w' \in W^+} \bigcup_{y,y' \in W^J} Z_{J,v,w,v',w';y,y'} \). Moreover, for any \(v, w, v', w' \in W^J, y, y' \in W^J \) with \(v \leq w, v' \leq w' \), \(Z_{J,v,w,v',w';y,y'} \) is a connected component of \(Z_{J,v,w,v',w';y,y'} \) and is a semi-algebraic cell which is isomorphic to \(\mathcal{R}_{v,w}^J \), where \(d = l(w) + l(w') + 2l(w'_0) + 1 \).

Proof. \(\mathcal{P}_{v,w,>0} \) is a connected component of \(\mathcal{P}_{v,w} \) (resp. \(\mathcal{P}_{v',w'} \)) (see [L3]). Thus \(\{(P, Q, \gamma) \in Z_{J,v,w,v',w';y,y'}^J \mid P \in \mathcal{P}_{v,w,>0} \}, \psi(Q) \in \mathcal{P}_{v',w',>0} \) \} is open and closed in \(Z_{J,v,w,v',w';y,y'} \). To prove that \(\overline{Z_{J,v,w,v',w';y,y'}^J} \) is a connected component of \(Z_{J,v,w,v',w';y,y'} \), it is enough to prove that \(\overline{Z_{J,v,w,v',w';y,y'}^J} \) is a connected component of \(\{(P, Q, \gamma) \in Z_{J,v,w,v',w';y,y'}^J \mid P \in \mathcal{P}_{v,w,>0} \}, \psi(Q) \in \mathcal{P}_{v',w',>0} \} \).

Assume that \(g \in G_{v,w,>0} \) and \(l \in L \). We have that \(\left(\mathcal{P}_{J,B^+} \right) \) is the unique element in \(\mathcal{R}_{v,w} \) that is contained in \(\mathcal{P}_{J,B^+} \) (see 1.4). Therefore \(\left(\mathcal{P}_{J,B^+} \right) = \mathcal{P}_{J,B^+} \). Similarly, \(\mathcal{P}_{J,B^-} = \mathcal{P}_{J,B^-} \) and \(\mathcal{P}_{J,B^-} = \mathcal{P}_{J,B^-} \) and \(\mathcal{P}_{J,B^-} = \mathcal{P}_{J,B^-} \). Thus \(\mathcal{P}_{J,B^+} \) is a connected component of \(\mathcal{R}_{v,w}^J \).

Therefore we have that \(\mathcal{P}_{J,B^+} \) is a connected component of \(\mathcal{R}_{v,w}^J \) if and only if \(l \in B^+ \mathcal{P}_{J,B^+} \) and \(\mathcal{R}_{v,w}^J \) is a connected component of \(\mathcal{R}_{v,w}^J \).

Note that \(L \cap B^+ \subset \mathcal{P}_{J,B^+} \) and \(\mathcal{P}_{J,B^+} \) is a connected component of \(\mathcal{R}_{v,w}^J \).

Therefore, \(L \cap B^+ \mathcal{P}_{J,B^+} \) is a connected component of \(\mathcal{R}_{v,w}^J \).

Similarly, \(L \cap \mathcal{P}_{J,B^+} \mathcal{P}_{J,B^+} \) is a connected component of \(\mathcal{R}_{v,w}^J \).

Then \(\mathcal{P}_{J,B^+} \) is a connected component of \(\mathcal{R}_{v,w}^J \) and \(\mathcal{R}_{v,w}^J \) is a connected component of \(\mathcal{R}_{v,w}^J \).

Note that \(L \cap B^+ \subset \mathcal{P}_{J,B^+} \) and \(\mathcal{P}_{J,B^+} \) is a connected component of \(\mathcal{R}_{v,w}^J \).

Therefore, \(L \cap B^+ \mathcal{P}_{J,B^+} \) is a connected component of \(\mathcal{R}_{v,w}^J \).

Similarly, \(L \cap \mathcal{P}_{J,B^+} \mathcal{P}_{J,B^+} \) is a connected component of \(\mathcal{R}_{v,w}^J \).

Then \(\mathcal{P}_{J,B^+} \) is a connected component of \(\mathcal{R}_{v,w}^J \) and \(\mathcal{R}_{v,w}^J \) is a connected component of \(\mathcal{R}_{v,w}^J \).

Note that \(L \cap B^+ \subset \mathcal{P}_{J,B^+} \) and \(\mathcal{P}_{J,B^+} \) is a connected component of \(\mathcal{R}_{v,w}^J \).

Therefore, \(L \cap B^+ \mathcal{P}_{J,B^+} \) is a connected component of \(\mathcal{R}_{v,w}^J \).

Similarly, \(L \cap \mathcal{P}_{J,B^+} \mathcal{P}_{J,B^+} \) is a connected component of \(\mathcal{R}_{v,w}^J \).

Then \(\mathcal{P}_{J,B^+} \) is a connected component of \(\mathcal{R}_{v,w}^J \) and \(\mathcal{R}_{v,w}^J \) is a connected component of \(\mathcal{R}_{v,w}^J \).
that \((L \cap B^+) y \hat{w}_0^d (L \cap B^+) \cap (L \cap B^-) \hat{w}_0^d y' (L \cap B^-) \cap L \geq 0 = U_{y \hat{w}_0^d, >0}^- T_{>0} U_{y \hat{w}_0^d, >0}^+ y', >0\).

Therefore
\[
Z_{v_0, >0}^{v, w_0, w, y, y'} \cong G_{v, w_0, >0} \times G_{v', w', >0} \times U_{y \hat{w}_0^d, >0}^- T_{>0} U_{y \hat{w}_0^d, >0}^+ y', >0 / (Z(L) \cap T_{>0})
\]
\[
\cong R_{>0}^{l(w)+l(w')+2l(w_0')+l(v)-l(v')-l(y)-l(y')}.
\]

By 3.15, we have that \(U_{y \hat{w}_0^d, >0}^- T_{>0} U_{y \hat{w}_0^d, >0}^+ y', >0 / (Z(L) \cap T_{>0})\) is a connected component of \((L \cap B^+) y \hat{w}_0^d (L \cap B^+) \cap (L \cap B^-) \hat{w}_0^d y' (L \cap B^-) / Z(L)\). The corollary is proved. \(\square \)

Acknowledgements
I thank George Lusztig for suggesting the problem and for many helpful discussions. I also thank the referee for pointing out several mistakes in the original manuscript and for some useful comments, especially concerning 3.8, 3.10 and 3.15.

References

