Explicit matrices for irreducible representations of Weyl groups

Author:
John R. Stembridge

Journal:
Represent. Theory **8** (2004), 267-289

MSC (2000):
Primary 20F55, 20C40; Secondary 05E15, 20-04

Published electronically:
July 8, 2004

Erratum:
Represent. Theory 10 (2006), 48

MathSciNet review:
2077483

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We present algorithms for constructing explicit matrices for every irreducible representation of a Weyl group, with particular emphasis on the exceptional groups. The algorithms we present will produce representing matrices in either of two forms: real orthogonal, with matrix entries that are square roots of rationals, or rational and seminormal. In both cases, the matrices are ``hereditary'' in the sense that they behave well with respect to restriction along a chosen chain of parabolic subgroups.

**[BM]**Dan Barbasch and Allen Moy,*A unitarity criterion for 𝑝-adic groups*, Invent. Math.**98**(1989), no. 1, 19–37. MR**1010153**, 10.1007/BF01388842**[B]**D. Barbasch,*Unitary spherical spectrum for split classical groups*, preprint.**[Be]**Mark Benard,*On the Schur indices of characters of the exceptional Weyl groups*, Ann. of Math. (2)**94**(1971), 89–107. MR**0297887****[F1]**J. S. Frame,*Orthogonal group matrices of hyperoctahedral groups*, Nagoya Math. J.**27**(1966), 585–590. MR**0197583****[F2]**J. S. Frame,*The classes and representations of the groups of 27 lines and 28 bitangents*, Ann. Mat. Pura Appl. (4)**32**(1951), 83–119. MR**0047038****[F3]**J. S. Frame,*The characters of the Weyl group 𝐸₈*, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford, 1970, pp. 111–130. MR**0269751****[GP]**Meinolf Geck and Götz Pfeiffer,*Characters of finite Coxeter groups and Iwahori-Hecke algebras*, London Mathematical Society Monographs. New Series, vol. 21, The Clarendon Press, Oxford University Press, New York, 2000. MR**1778802****[G]**Brian D. O. Anderson and Michael Green,*Hilbert transform and gain/phase error bounds for rational functions*, IEEE Trans. Circuits and Systems**35**(1988), no. 5, 528–535. MR**936289**, 10.1109/31.1780**[Gy]**Akihiko Gyoja,*On the existence of a 𝑊-graph for an irreducible representation of a Coxeter group*, J. Algebra**86**(1984), no. 2, 422–438. MR**732258**, 10.1016/0021-8693(84)90040-1**[JK]**Gordon James and Adalbert Kerber,*The representation theory of the symmetric group*, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley Publishing Co., Reading, Mass., 1981. With a foreword by P. M. Cohn; With an introduction by Gilbert de B. Robinson. MR**644144****[KL1]**David Kazhdan and George Lusztig,*Representations of Coxeter groups and Hecke algebras*, Invent. Math.**53**(1979), no. 2, 165–184. MR**560412**, 10.1007/BF01390031**[KL2]**David Kazhdan and George Lusztig,*A topological approach to Springer’s representations*, Adv. in Math.**38**(1980), no. 2, 222–228. MR**597198**, 10.1016/0001-8708(80)90005-5**[K]**Takeshi Kondo,*The characters of the Weyl group of type 𝐹₄*, J. Fac. Sci. Univ. Tokyo Sect. I**11**(1965), 145–153 (1965). MR**0185018****[R]**Arun Ram,*Seminormal representations of Weyl groups and Iwahori-Hecke algebras*, Proc. London Math. Soc. (3)**75**(1997), no. 1, 99–133. MR**1444315**, 10.1112/S0024611597000282**[Ru]**Daniel Edwin Rutherford,*Substitutional Analysis*, Edinburgh, at the University Press, 1948. MR**0027272****[Sp]**T. A. Springer,*A construction of representations of Weyl groups*, Invent. Math.**44**(1978), no. 3, 279–293. MR**0491988****[S1]**John R. Stembridge,*On the eigenvalues of representations of reflection groups and wreath products*, Pacific J. Math.**140**(1989), no. 2, 353–396. MR**1023791****[S2]**J. R. Stembridge,*A Maple package for root systems and finite Coxeter groups*, available electronically at`www.math.lsa.umich.edu/jrs/maple.html`.**[OV]**Andrei Okounkov and Anatoly Vershik,*A new approach to representation theory of symmetric groups*, Selecta Math. (N.S.)**2**(1996), no. 4, 581–605. MR**1443185**, 10.1007/PL00001384**[Y]**A. Young,*The collected papers of Alfred Young*, University of Toronto Press, Toronto, 1977. 0439548 (55:12438)

Retrieve articles in *Representation Theory of the American Mathematical Society*
with MSC (2000):
20F55,
20C40,
05E15,
20-04

Retrieve articles in all journals with MSC (2000): 20F55, 20C40, 05E15, 20-04

Additional Information

**John R. Stembridge**

Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109–1109

Email:
jrs@umich.edu

DOI:
http://dx.doi.org/10.1090/S1088-4165-04-00236-5

Received by editor(s):
March 12, 2004

Published electronically:
July 8, 2004

Additional Notes:
This work was supported by NSF grants DMS–0070685 and DMS–0245385

Article copyright:
© Copyright 2004
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.