Explicit matrices for irreducible representations of Weyl groups
Author:
John R. Stembridge
Journal:
Represent. Theory 8 (2004), 267289
MSC (2000):
Primary 20F55, 20C40; Secondary 05E15, 2004
Published electronically:
July 8, 2004
Erratum:
Represent. Theory 10 (2006), 48
MathSciNet review:
2077483
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We present algorithms for constructing explicit matrices for every irreducible representation of a Weyl group, with particular emphasis on the exceptional groups. The algorithms we present will produce representing matrices in either of two forms: real orthogonal, with matrix entries that are square roots of rationals, or rational and seminormal. In both cases, the matrices are ``hereditary'' in the sense that they behave well with respect to restriction along a chosen chain of parabolic subgroups.
 [BM]
Dan
Barbasch and Allen
Moy, A unitarity criterion for 𝑝adic groups, Invent.
Math. 98 (1989), no. 1, 19–37. MR 1010153
(90m:22038), http://dx.doi.org/10.1007/BF01388842
 [B]
D. Barbasch, Unitary spherical spectrum for split classical groups, preprint.
 [Be]
Mark
Benard, On the Schur indices of characters of the exceptional Weyl
groups, Ann. of Math. (2) 94 (1971), 89–107. MR 0297887
(45 #6939)
 [F1]
J.
S. Frame, Orthogonal group matrices of hyperoctahedral groups,
Nagoya Math. J. 27 (1966), 585–590. MR 0197583
(33 #5748)
 [F2]
J.
S. Frame, The classes and representations of the groups of 27 lines
and 28 bitangents, Ann. Mat. Pura Appl. (4) 32
(1951), 83–119. MR 0047038
(13,817i)
 [F3]
J.
S. Frame, The characters of the Weyl group 𝐸₈,
Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967)
Pergamon, Oxford, 1970, pp. 111–130. MR 0269751
(42 #4646)
 [GP]
Meinolf
Geck and Götz
Pfeiffer, Characters of finite Coxeter groups and IwahoriHecke
algebras, London Mathematical Society Monographs. New Series,
vol. 21, The Clarendon Press, Oxford University Press, New York, 2000.
MR
1778802 (2002k:20017)
 [G]
Brian
D. O. Anderson and Michael
Green, Hilbert transform and gain/phase error bounds for rational
functions, IEEE Trans. Circuits and Systems 35
(1988), no. 5, 528–535. MR 936289
(89k:94005), http://dx.doi.org/10.1109/31.1780
 [Gy]
Akihiko
Gyoja, On the existence of a 𝑊graph for an irreducible
representation of a Coxeter group, J. Algebra 86
(1984), no. 2, 422–438. MR 732258
(85k:20144b), http://dx.doi.org/10.1016/00218693(84)900401
 [JK]
Gordon
James and Adalbert
Kerber, The representation theory of the symmetric group,
Encyclopedia of Mathematics and its Applications, vol. 16,
AddisonWesley Publishing Co., Reading, Mass., 1981. With a foreword by P.
M. Cohn; With an introduction by Gilbert de B. Robinson. MR 644144
(83k:20003)
 [KL1]
David
Kazhdan and George
Lusztig, Representations of Coxeter groups and Hecke algebras,
Invent. Math. 53 (1979), no. 2, 165–184. MR 560412
(81j:20066), http://dx.doi.org/10.1007/BF01390031
 [KL2]
David
Kazhdan and George
Lusztig, A topological approach to Springer’s
representations, Adv. in Math. 38 (1980), no. 2,
222–228. MR
597198 (82f:20076), http://dx.doi.org/10.1016/00018708(80)900055
 [K]
Takeshi
Kondo, The characters of the Weyl group of type
𝐹₄, J. Fac. Sci. Univ. Tokyo Sect. I
11 (1965), 145–153 (1965). MR 0185018
(32 #2488)
 [R]
Arun
Ram, Seminormal representations of Weyl groups and IwahoriHecke
algebras, Proc. London Math. Soc. (3) 75 (1997),
no. 1, 99–133. MR 1444315
(98d:20007), http://dx.doi.org/10.1112/S0024611597000282
 [Ru]
Daniel
Edwin Rutherford, Substitutional Analysis, Edinburgh, at the
University Press, 1948. MR 0027272
(10,280i)
 [Sp]
T.
A. Springer, A construction of representations of Weyl groups,
Invent. Math. 44 (1978), no. 3, 279–293. MR 0491988
(58 #11154)
 [S1]
John
R. Stembridge, On the eigenvalues of representations of reflection
groups and wreath products, Pacific J. Math. 140
(1989), no. 2, 353–396. MR 1023791
(91a:20022)
 [S2]
J. R. Stembridge, A Maple package for root systems and finite Coxeter groups, available electronically at www.math.lsa.umich.edu/jrs/maple.html.
 [OV]
Andrei
Okounkov and Anatoly
Vershik, A new approach to representation theory of symmetric
groups, Selecta Math. (N.S.) 2 (1996), no. 4,
581–605. MR 1443185
(99g:20024), http://dx.doi.org/10.1007/PL00001384
 [Y]
A. Young, The collected papers of Alfred Young, University of Toronto Press, Toronto, 1977. 0439548 (55:12438)
 [BM]
 D. Barbasch and A. Moy, A unitarity criterion for adic groups, Invent. Math. 98 (1989), 1937. MR 1010153 (90m:22038)
 [B]
 D. Barbasch, Unitary spherical spectrum for split classical groups, preprint.
 [Be]
 M. Benard, On the Schur indices of characters of the exceptional Weyl groups, Ann. of Math. 94 (1971), 89107. MR 0297887 (45:6939)
 [F1]
 J. S. Frame, Orthogonal group matrices of hyperoctahedral groups, Nagoya Math. J. 27 (1966), 585590. MR 0197583 (33:5748)
 [F2]
 J. S. Frame, The classes and representations of the groups of 27 lines and 28 bitangents, Ann. Mat. Pura Appl. 32 (1951), 83119. MR 0047038 (13:817i)
 [F3]
 J. S. Frame, The characters of the Weyl group , Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), Pergamon, Oxford, 1970, pp. 111130. MR 0269751 (42:4646)
 [GP]
 M. Geck and G. Pfeiffer, Characters of finite Coxeter groups and IwahoriHecke algebras, Oxford Univ. Press, New York, 2000. MR 1778802 (2002k:20017)
 [G]
 C. Greene, A rationalfunction identity related to the MurnaghanNakayama formula for the characters of , J. Algebraic Combin. 1 (1992), 235255. MR 0936289 (89k:94005)
 [Gy]
 A. Gyoja, On the existence of a graph for an irreducible representation of a Coxeter group, J. Algebra 86 (1984), 422438. MR R0732258 (85k:20144b)
 [JK]
 G. James and A. Kerber, The Representation Theory of the Symmetric Group, AddisonWesley, Reading, MA, 1981. MR 0644144 (83k:20003)
 [KL1]
 D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165184. MR 0560412 (81j:20066)
 [KL2]
 D. Kazhdan and G. Lusztig, A topological approach to Springer's representations, Adv. in Math. 38 (1980), 222228. MR 597198 (82f:20076)
 [K]
 T. Kondo, The characters of the Weyl group of type , J. Fac. Sci. Univ. Tokyo Sect. I 11 (1965), 145153. MR 0185018 (32:2488)
 [R]
 A. Ram, Seminormal representations of Weyl groups and IwahoriHecke algebras, Proc. London Math. Soc. (3) 75 (1997), 99133. MR 1444315 (98d:20007)
 [Ru]
 D. E. Rutherford, Substitutional Analysis, University Press, Edinburgh, 1948. MR 0027272 (10:280i)
 [Sp]
 T. A. Springer, A construction of representations of Weyl groups, Invent. Math. 44 (1978), 279293. MR 0491988 (58:11154)
 [S1]
 J. R. Stembridge, On the eigenvalues of representations of reflection groups and wreath products, Pacific J. Math. 140 (1989), 353396. MR 1023791 (91a:20022)
 [S2]
 J. R. Stembridge, A Maple package for root systems and finite Coxeter groups, available electronically at www.math.lsa.umich.edu/jrs/maple.html.
 [OV]
 A. Okounkov and A. Vershik, A new approach to representation theory of symmetric groups, Selecta Math.(N.S.) 2 (1996), 581605. MR 1443185 (99g:20024)
 [Y]
 A. Young, The collected papers of Alfred Young, University of Toronto Press, Toronto, 1977. 0439548 (55:12438)
Similar Articles
Retrieve articles in Representation Theory of the American Mathematical Society
with MSC (2000):
20F55,
20C40,
05E15,
2004
Retrieve articles in all journals
with MSC (2000):
20F55,
20C40,
05E15,
2004
Additional Information
John R. Stembridge
Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109–1109
Email:
jrs@umich.edu
DOI:
http://dx.doi.org/10.1090/S1088416504002365
PII:
S 10884165(04)002365
Received by editor(s):
March 12, 2004
Published electronically:
July 8, 2004
Additional Notes:
This work was supported by NSF grants DMS–0070685 and DMS–0245385
Article copyright:
© Copyright 2004
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
