ON THE CENTRALIZER OF A REGULAR, SEMI-SIMPLE, STABLE CONJUGACY CLASS

BENEDICT H. GROSS

Abstract. We describe the isomorphism class of the torus centralizing a regular, semi-simple, stable conjugacy class in a simply-connected, semi-simple group.

Let \(k \) be a field, and let \(G \) be a semi-simple, simply-connected algebraic group, which is quasi-split over \(k \). The theory of semi-simple conjugacy classes in \(G \) is well understood, from work of Steinberg [S] and Kottwitz [K]. Any semi-simple conjugacy class \(s \) which is defined over \(k \) is represented by a semi-simple element \(\gamma \) in \(G(k) \). The centralizer \(G_\gamma \) of \(\gamma \) in \(G \) is connected and reductive. It is determined by the stable class \(s \) up to inner twisting, and one can choose a representative \(\gamma \) so that \(G_\gamma \) is quasi-split over \(k \).

In this paper, we will only consider the case when the semi-simple stable class \(s \) is regular. Then \(G_\gamma \) is a maximal torus in \(G \), whose \(k \)-isomorphism class depends only on the class \(s \). Our aim is to determine the isomorphism class of this torus, which we denote \(T_s \) over \(k \), from the data specifying \(s \) in the variety of semi-simple stable conjugacy classes.

We will first give an abstract description of the character group \(X(T_s) \), as an integral representation of the Galois group of \(k \). We will then describe \(T_s \) concretely, in some special cases. In particular, for a simple, split group \(G \) which is not simply-laced, we use a semi-direct product decomposition of the Weyl group to reduce the problem to a semi-simple, quasi-split subgroup \(H_s \) containing \(T_s \) and the long root subgroups of \(G \).

The concrete description of \(T_s \) allows one to compute the terms corresponding to regular classes \(s \) in the stable trace formula (cf. [G-P]). For the general semi-simple class, one would like to have a description of the motive \(M(G_\gamma) \) of the centralizer.

Table of Contents

1. The extended Weyl group
2. The variety of semi-simple classes
3. The discriminant locus
4. The character group \(X(T_s) \)
5. Long and short roots
6. Linear and unitary groups

Received by the editors August 31, 2004.
2000 Mathematics Subject Classification. Primary 20G15.
1. The extended Weyl group

We recall that G is assumed quasi-split over k. Let B be a Borel subgroup, and let T be a Levi factor of B — which is a maximal torus in G.

Let k^s denote a separable closure of k, and let $\Gamma = \text{Gal}(k^s/k)$. Let $X(T) = \text{Hom}_{k^s}(T, \mathbb{G}_m)$ be the character group of T over k^s, which is an integral representation of Γ. Let E be the fixed field of the kernel of this action, so the quotient $\Gamma_E = \text{Gal}(E/k)$ acts faithfully on $X(T)$. Both the torus T and the group G are split by the finite Galois extension E of k.

Let $\mathbf{W} = N_G(T)/T$ be the Weyl group of T in G. This is a finite, étale group scheme over k, which is pointwise rational over E. We put $W = \mathbf{W}(E)$. The Galois group Γ_E acts on W, and the semi-direct product $W \Gamma_E$ acts on $X(T)$ via the reflection representation

$$r : W \Gamma_E \rightarrow GL(X(T)).$$

We call $W \Gamma_E$ the extended Weyl group.

The roots of α of T are the non-zero elements of $X(T) = \text{Hom}_{E}(T, \mathbb{G}_m)$ which occur in the action of T on $\text{Lie}(G)$ over E. They are permuted under the reflection action of the extended Weyl group $W \Gamma_E$. Associated to each root α is a co-root α^\vee in $\text{Hom}_{E}(\mathbb{G}_m, T)$, as well as a reflection r_α in W, whose action on $X(T)$ is given by $r_\alpha(x) = x - (x, \alpha^\vee) \cdot \alpha$.

Let $\{\alpha_1, \ldots, \alpha_n\}$ be the simple roots of T determined by B. These simple roots are permuted by the action of Γ_E on $X(T)$, and the simple reflections r_α, generate W.

2. The variety of semi-simple classes

The simple co-roots $\{\alpha_1^\vee, \ldots, \alpha_n^\vee\}$ form a basis of $\text{Hom}_{E}(\mathbb{G}_m, T)$, as G is simply-connected. Let $\{\omega_1, \ldots, \omega_n\}$ be the dual basis of $X(T)$. This basis is permuted by the action of Γ_E. If $\sigma \in \Gamma_E$, we write σ for the associated permutation of the ω_i.

Let V_i denote the irreducible representation of G over E with highest weight ω_i for B. Then, for all σ in Γ_E, we have

$$V_i^\sigma \simeq V_{\omega_i(\sigma)}.$$

In particular, if γ is any element in $G(k)$, we have

$$\text{Tr}(\gamma|V_i)^\sigma = \text{Tr}(\gamma|V_{\omega_i(\sigma)}) \quad \text{in} \quad E.$$

Let S be the twisted form of affine n-space over k, given by the permutation representation σ of Γ_E on the coordinates:

$$S(k) = \{(x_1, \ldots, x_n) \in E^n : x_i^\sigma = x_{\omega_i(\sigma)}\}.$$

If γ is an element in $G(k)$, then

$$x(\gamma) = (\text{Tr}(\gamma|V_1), \ldots, \text{Tr}(\gamma|V_n))$$

is a point of $S(k)$, which depends only on the stable conjugacy class of γ in $G(k^s)$.

The following fundamental result is due to Steinberg [S].
Proposition. If s is any point in $S(k)$, there is a semi-simple element γ in $G(k)$ with $x(\gamma) = s$. The element γ is well defined up to conjugacy in $G(k^s)$. The map that assigns to each semi-simple element γ the point $x(\gamma)$ identifies S with the variety of semi-simple stable conjugacy classes in G.

3. The discriminant locus

Steinberg constructs the variety S as a quotient:

$$T \rightarrow T/W = S.$$

This covering is étale over the complement of a divisor $D \subset S$.

Over the extension E, $S = \mathbb{A}^n = T/W$ and the divisor D is given by the zero locus of a polynomial $D(x_1, \ldots, x_n)$. As a W-invariant function on T, $D(t)$ can be given by the formula

$$D(t) = (-1)^N \cdot \prod_\alpha (t^\alpha - 1).$$

Here the product is taken over all the roots, and N is the number of positive roots.

For example, when $G = \text{SL}_2$, we have $x = t + t^{-1}$, and

$$D(t) = (-1)(t^2 - 1)(t^{-2} - 1) = x^2 - 4.$$

The square-root Δ of D is the usual denominator in the Weyl character formula:

$$\Delta(t) = \prod_{\alpha > 0} \left(t^{\alpha/2} - t^{-\alpha/2} \right).$$

This function on T satisfies $\Delta(wt) = \text{sign}(w)\Delta(t)$.

Since $D(t)$ is also invariant under the action of Γ_E, it defines a divisor D on S over k. The complement $S' = S - D$ defines the variety of regular, semi-simple, stable conjugacy classes in G. If s is a point of $S'(k)$, there is a regular, semi-simple conjugacy class γ in $G(k)$ with $x(\gamma) = s$. The centralizer G_γ of γ in G is a maximal torus, whose isomorphism class T_s over k depends only on s.

4. The character group $X(T_s)$

Since the covering $T \rightarrow S$ is Galois over $S' = S - D$, it gives rise to a homomorphism of the fundamental group

$$\rho : \pi_1(S') \rightarrow W.\Gamma_E$$

well defined up to conjugacy by W. The subgroup $\pi_1^{\text{geom}}(S')$ maps to W, and the resulting homomorphism from the quotient $\Gamma = \pi_1^{\text{geom}}/\pi_1^{\text{geom}}$ to Γ_E is the standard projection.

Specializing ρ to the point s in $S'(k)$, we obtain a homomorphism

$$\rho_s : \Gamma \rightarrow W.\Gamma_E,$$

well defined up to conjugation by W, such that the resulting map $\Gamma \rightarrow \Gamma_E$ is the standard projection. In particular, the normal subgroup $\text{Gal}(k^s/E)$ maps into W.

The following result gives an abstract determination of the torus T_s over k, via a description of its character group $X(T_s)$.
Proposition. The character group $X(T_s)$ is isomorphic to the free \mathbb{Z}-module $X(T)$, with Galois action given by the composite homomorphism

$$\Gamma \xrightarrow{\rho^*} W.\Gamma_E \xrightarrow{r} \text{GL}(X(T)),$$

where r is the reflection representation.

Proof. We give the argument in the split case, when $E = k$. Let γ be a regular, semi-simple class in $G(k)$ which maps to s in $S'(k)$, and let t be an element in $T(k^s)$ which lies above s in the covering $T \to S = T/W$.

Since γ and t have the same image in $S(k)$, they are conjugate in $G(k^s) : g\gamma g^{-1} = t$. Conjugation by g gives an isomorphism of their centralizers, which is defined over k^s:

$$\varphi : G_\gamma \to T.$$

The fiber over s in the covering $T \to S$ can be identified with the orbit Wt in $T(k^s)$. In particular, since s is defined over k, $t^\gamma = w_\alpha(t)$ for every $\gamma \in \Gamma$. The map $\sigma \mapsto w_\sigma$ is the homomorphism $\rho_s : \Gamma \to W$. In particular, the isomorphism φ^σ (which is conjugation by g^σ) is equal to $\rho_s(\sigma) \circ \varphi$. Hence the 1-cocycle $\sigma \mapsto \varphi^\sigma$ defines G_γ as a twist of T over k is given by the homomorphism $\rho_s : \Gamma \to W \subset \text{Aut}_k(T)$. It follows that the action of Γ, on $X(T_s) = X(G_\gamma)$ is given by the composition of ρ_s with the reflection representation.

The quasi-split case is similar, but the 1-cocycle ρ_s is not a homomorphism, as Γ_E acts nontrivially on W. This can be converted to a homomorphism $w_\sigma : \Gamma \to W \subset \text{Aut}_k(T)$ from Γ to the extended Weyl group $W.\Gamma_E$ [S3 p. 43]. The rest of the argument is similar. \qed

Note. The above argument shows that the class of the 1-cocycle ρ_s in $H^1(k,W)$ is in the image of $\ker : (H^1(k,N(T)) \to H^1(k,G))$. Any cocycle with this property (or the equivalent homomorphism from Γ to the extended Weyl group $W.\Gamma_E$) arises from a stable, regular, semi-simple class in G.

5. Long and Short Roots

In this section, we assume that G is quasi-simple and split, and that W has two orbits on the set of roots in $X(T)$. These are the long and short roots; the long roots are in the orbit of the highest root (the highest weight of B on $\text{Lie}(G)$).

Let W_ℓ denote the normal subgroup of W generated by the reflections in the long roots. Let W_{ss} denote the subgroup of W generated by the reflections in the short simple roots (relative to B).

Proposition. W is isomorphic to the semi-direct product

$$W = W_\ell.W_{ss}.$$

The group W_ℓ is the Weyl group of the sub-root system (of the same rank) of long roots. The group W_{ss} isomorphic to the symmetric group S_m, where $(m-1)$ is the number of short simple roots.

Proof. The following argument was shown to me by Mark Reeder. Let P be the set of positive roots for G, relative to B, and let P_ℓ be the set of long positive roots. Then P_ℓ is a positive system for the sub-root system of long roots.

If α is a simple root, then $r_\alpha(P) = P - \{\alpha\} \cup \{-\alpha\}$. Hence every element in W_{ss} stabilizes P_ℓ. Since W_ℓ acts simply-transitively on the positive systems of long roots, $W_\ell \cap W_{ss} = 1$.

To show $W = W_\ell, W_{ss}$, let w be an arbitrary element of W. Then $w(P) = P'$ is another system of positive roots, and $w(P_\ell) = P'_\ell$ is another system of positive long roots. Hence there is a unique element w_ℓ in W_ℓ with $P'_\ell = w_\ell(P_\ell)$. The element $v = w^{-1} \cdot w$ then stabilizes P_ℓ.

To show that v is in W_{ss}, we use an argument familiar in Lie theory. Let J be the subset of short simple roots. In the coset $v \cdot W_{ss}$, choose an element u of shortest length. (In fact, the element u is unique.) Then $u(J) \subset P$, for if $u(\alpha) < 0$ for any $\alpha \in J$, u would have a reduced expression ending in r_α, contradicting the minimality of its length. Since $u(P_\ell) = P_\ell$ and $u(J) \subset P$, the element u of W stabilizes P. Hence $u = 1$, so v is in W_{ss}, and $w = w_\ell \cdot v = w_\ell \cdot w_{ss}$ as claimed. □

Here is a table of the cases:

<table>
<thead>
<tr>
<th>W of type</th>
<th>W_ℓ of type</th>
<th>W_{ss} isomorphic to</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_n</td>
<td>D_n</td>
<td>S_2</td>
</tr>
<tr>
<td>C_n</td>
<td>$(A_1)^n$</td>
<td>S_n</td>
</tr>
<tr>
<td>G_2</td>
<td>A_2</td>
<td>S_2</td>
</tr>
<tr>
<td>F_4</td>
<td>D_4</td>
<td>S_3</td>
</tr>
</tbody>
</table>

In this case, the discriminant divisor $D \subset S$ is reducible, as $D(x) = D_\ell(x)D_s(x)$ with

$$D_\ell(t) = (-1)^{N_\ell} \prod_{\alpha \text{ long}} (t^\alpha - 1),$$

$$D_s(t) = (-1)^{N_s} \prod_{\alpha \text{ short}} (t^\alpha - 1).$$

Here N_ℓ and N_s are half the number of long and short roots, respectively.

Now let s be a regular, semi-simple, stable class in G, and fix an isomorphism $W_{ss} \simeq S_m$. (When $m \neq 6$, this is unique up to inner automorphism. When $m = 6$ it can be fixed by having W_{ss} act on the ± weight spaces in the standard representation of $G = Sp_{12}$.) The composite homomorphism

$$\delta: \Gamma \longrightarrow W \longrightarrow W_{ss} \simeq S_m$$

(up to conjugacy) defines an étale k-algebra K of rank m: the algebra K is the twist of k^m by the 1-cocycle δ [Se2 p. 652]. Let E be the finite Galois extension of k, fixed by the kernel of δ. Then E is the “Galois closure” of K, and $\Gamma_E \subset S_m$ is the image of δ. The automorphism group of the algebra K over k is the centralizer of the subgroup Γ_E in S_m.

We may view ρ_s as a homomorphism

$$\rho_s: \Gamma \rightarrow W_\ell, \Gamma_E$$

corresponding to a stable class in the quasi-split subgroup $H_s \subset G$ with root system the long roots and Weyl group W_ℓ. This subgroup is split by E, and $T_s \subset H_s \subset G$. This approach often simplifies the computation of T_s, as we will see in §7 and §8.

One caveat—several distinct stable classes s' in H_s may become fused (i.e., conjugate) with s in G. Indeed, if we conjugate ρ_s above with any element of $W_{ss} \simeq S_m$ which centralizes Γ_E, we get a homomorphism $\rho_{s'}$ corresponding to a different stable class in H_s which is stably conjugate to s in G. This corresponds to the fact that the finite group $\text{Aut}_k(K)$ normalizes the subgroup H_s in G.

CENTRALIZER OF A REGULAR, SEMI-SIMPLE, STABLE CONJUGACY CLASS 291
6. Linear and Unitary Groups

The description of T_s in §4 is fairly abstract. For some classical groups G, we can give a more concrete realization of T_s, using the characteristic polynomial of the standard representation (cf. [S-S] and [G-Mc, Appendix]). We will describe the group of points $T_s(k)$, and when k is local or global the Artin L-function of the Galois representation $X(T_s)$.

Consider the split group $G = SL(V)$ with $n = \dim(V) \geq 2$. The fundamental representations V_i are given by the exterior powers $\Lambda^i V$, for $i = 1, 2, \ldots, n-1$. Giving the point $s = (x_1, \ldots, x_n)$ in S with $x_i = \Tr(\gamma^i \Lambda V)$ is equivalent to specifying the characteristic polynomial of γ on V:

\[f(z) = \det(z \cdot 1 - \gamma | V) \]
\[= z^n - x_1 z^{n-1} + x_2 z^{n-2} - \cdots + (-1)^n. \]

The discriminant $D(s)$ is equal to $\text{disc}(f(z))$, so s lies in S' if and only if the characteristic polynomial $f(z)$ is separable (by which we mean that $f(z)$ has distinct roots in an algebraic closure of k).

Assume s lies in $S'(k)$. The k-algebra $K = k[z]/(f(z))$ is then étale of rank n. The permutation action of Γ on the finite set $\text{Hom}(K, k^\times)$ gives a homomorphism $\delta : \Gamma \to S_n$. If we identify W with S_n, by having it permute the weight spaces for T on V, then δ is conjugate to ρ_s. The torus T_s has points

\[T_s(k) = \{ t \in K^* : Nt = 1 \} \subset G(k) = SL(K). \]

The L-function of the character group is given by $\zeta_K(s)/\zeta_k(s)$.

Now consider the quasi-split unitary group $G = SU(V)$, associated to a (quasi-split) Hermitian space V with $n = \dim(V) \geq 3$ over the separable quadratic field extension E. Let $\beta \mapsto \overline{\beta}$ denote the nontrivial automorphism of E over k.

Again, the fundamental representations of G are the $\Lambda^i V$. These are defined over E, and for $\gamma \in G(k)$, $x_i = \Tr(\gamma^i \Lambda V)$ is conjugate to x_{n-i}. Furthermore, if $n = 2m$, x_m lies in k. Giving the point $s = (x_1, \ldots, x_{n-1})$ in $S(k)$ is equivalent to specifying the characteristic polynomial of γ on V:

\[f(z) = z^n - x_1 z^{n-1} + x_2 z^{n-2} - \cdots + (-1)^n. \]

Again we have $D(s) = \text{disc}(f)$, so s lies in $S'(k)$ precisely when $L = E[z]/(f(z))$ is an étale E-algebra of rank n.

Since $f(z) = (-z)^n f(1/z)$, the involution $\beta \mapsto \overline{\beta}$ of E extends to an involution $z^\tau = 1/z$ of L. Let M be the fixed algebra of τ. If

\[f(z) \cdot \overline{f(z)} = z^n g(z + 1/z), \]

then $g(y)$ is separable of degree n, and $M \simeq k[y]/(g(y))$. Here is a diagram of étale k-algebras:
The Hermitian form $\varphi(x,y) = \text{Tr}_{L/E}(cxy^\tau)$ on L/E is nondegenerate provided $c \in M^\ast$. For some choice of c, this space is quasi-split. The torus T_s has points
\begin{align*}
T_s(k) &= \{ t \in L^\ast : N_M t = N_E t = 1 \} \\
G(k) &= SU(L, \varphi)
\end{align*}

When k is local or global, the L-function of the character group is
\[\zeta_L(s) \zeta_k(s)/\zeta_M(s) \zeta_E(s). \]

7. Symplectic groups

In this section, we consider the split group $G = \text{Sp}(V)$, where V is a non-degenerate symplectic space over k of dimension $2n$. We use the method of §5 to reduce to the quasi-split subgroup $H_s = \text{Res}_{K/k} \text{SL}_2$, where K is an étale k-algebra of rank n.

The fundamental representations of G are the virtual modules $\Lambda V - i \Lambda V$, for $1 \leq i \leq n$, when k has characteristic zero. In general, they are always a virtual sum of the ΛV. Hence the point $s = (x_1, \ldots, x_n)$ in S, with $x_i = \text{Tr}(\gamma|V_i)$ determines, and is determined by, the characteristic polynomial of γ on V:
\[f(z) = \det(z \cdot 1 - \gamma|V) \]
\[= z^{2n} - x_1 z^{2n-1} + \cdots - x_1 z + 1. \]

This polynomial is palindromic:
\[f(z) = z^{2n} f(1/z) \]
as ΛV is isomorphic to $2n \Lambda V$. Hence
\[f(z) = z^n g(z + 1/z) \]
with $g(y) = y^n - x_1 y + \cdots$ of degree n.

We have the formulae:
\begin{align*}
D &= D_\ell \cdot D_s, \\
D_\ell(s) &= (-1)^n f(1)f(-1), \\
D_s(s) &= \text{disc}(g) \\
D_\ell \cdot D_s^2 &= \text{disc}(f).
\end{align*}

Hence γ is regular if and only if $f(z)$ is separable. If $s \in S'(k)$, we let K be the étale k-algebra of rank n defined by $K = k[y]/(g(y))$, and L the étale k-algebra of rank $2n$ defined by $L = k[z]/(f(z)) = K[z]/(z^n - yz + 1)$. Here is an algebra diagram:

```
L
  2
  \_\_\_
  K
  \_\_\_
  n
  \_\_\_
  k
```
Let \(\tau \) be the nontrivial involution of \(L \) over \(K \), defined by \(z^\tau = 1/z \).

The homomorphism \(\rho_s : \Gamma \to W = \langle \pm 1 \rangle^n \cdot S_n = W_\ell \cdot W_{ss} \) is given by the action of \(\Gamma \) on the covering of finite sets \(\text{Hom}(L, k^s) \to \text{Hom}(K, k^s) \).

The projection \(\delta : \Gamma \to W \to W_{ss} = S_n \) is given by the \(\acute{e} \text{tale} \) algebra \(K \), with Galois closure \(E \). The subgroup \(H_s = SL_2(K) \) is defined by the long roots, and \(T_s \) is the maximal torus in \(H_s \) defined by the quadratic extension \(L \) of \(K \):

\[
T_s(k) = \{ t \in L^* : t^{1+\tau} = 1 \} \subset SL_2(K).
\]

When \(k \) is local or global, the \(L \)-function of \(X(T_s) \) is equal to \(\zeta_L(s)/\zeta_K(s) \).

8. The Group \(G_2 \)

We now use the method of \(\S 5 \) to treat the split group of type \(G_2 \), the automorphisms of a split octonion algebra over \(k \). Let \(V_1 \) denote the 7-dimensional representation of \(G \) on the octonions of trace 0; this is irreducible and fundamental provided that \(\text{char}(k) \neq 2 \). Let \(V_2 \) denote the 14-dimensional adjoint representation; this is irreducible and fundamental provided that \(\text{char}(k) \neq 3 \).

In general, let \(x_1 = \text{Tr}(\gamma|V_1) \) and \(x_2 = \text{Tr}(\gamma|V_2) \). These elements of \(k \) determine the stable conjugacy class of a semi-simple element \(\gamma \). The characteristic polynomial of \(\gamma \) on the 7-dimensional representation \(V_1 \) has the form \((z - 1)f(z) \), with

\[
f(z) = z^6 - A z^5 + B z^4 - C z^3 + B z^2 - A z + 1,
\]

\[
A = x_1 - 1,
\]

\[
B = x_2 + 1,
\]

\[
C = x_1^2 - 2 x_2 + 1 = A^2 + 2 A - 2 B + 2.
\]

Furthermore, we have

\[
D_\ell = -4 x_1^3 + x_2^2 + 10 x_1 x_2 + x_1^2 + 2 x_1 + 10 x_2 - 7,
\]

\[
D_s = x_1^2 + 2 x_1 - 4 x_2 - 7.
\]

Assume that the stable class defined by \(\gamma \) is regular. Let

\[
h(\beta) = \beta^2 - A \beta + (B - A) = \beta^2 - (x_1 - 1) \beta + (x_2 - x_1 + 2).
\]

Since

\[
\text{disc}(h) = D_s,
\]

the quadratic algebra \(K = k[\beta]/(h(\beta)) \) is \(\acute{e} \text{tale} \). This is the \(\acute{e} \text{tale} \) algebra defined by the projection \(\rho_s : \Gamma \to W = W_\ell \cdot W_{ss} \to W_{ss} = S_2 \). Its Galois closure \(E \) is either \(K \) (if \(K \) is a field) or \(k \) (if \(K \simeq k + k \)). In both cases, \(\text{Aut}_k(K) = S_2 \).

Over the algebra \(K \), we have the factorization

\[
f(z) = (z^3 - \beta z^2 + \overline{\beta} z - 1)(z^3 - \overline{\beta} z^2 + \beta z - 1),
\]
where \(\alpha \mapsto \overline{\alpha} \) denotes the nontrivial automorphism of \(K \). The quasi-split group \(H_s \) defined by the long roots is \(SU_3(K) \) (which is isomorphic to the split group \(SL_3 \) when \(K = k + k \)), and \(s \) is the stable class in \(H_s \) with separable characteristic polynomial \(z^3 - \beta z^2 + \overline{\beta} z - 1 \). The class \(s' \) with polynomial \(z^3 - \beta z^2 + \beta z - 1 \) is fused with \(s \) in \(G = G_2 \).

Let \(L = K[z]/(z^3 - \beta z^2 + \overline{\beta} z - 1) \) be the fixed algebra. Then
\[
g(y) = y^3 - (x_1 - 1)y^2 + (x_2 - 2)y - (x_1^2 - 2x_2 - 2x_1 + 1),
\]
\[
f(z) = z^3 (z + 1/z),
\]
\[
disc(g) = D = D_L \cdot D_s.
\]

Here is a diagram of the étale \(k \)-algebras in question:

The torus \(T_s \) has points
\[
T_s(k) = \{ t \in L^* : \mathbb{N}_K t = \mathbb{N}_M t = 1 \}.
\]

If \(k \) is local or global, the \(L \)-function of \(X(T) \) is \(\zeta_L(s) \zeta_k(s)/\zeta_K(s) \zeta_M(s) \). If \(K = k + k \), the \(L \)-function is simply \(\zeta_M(s)/\zeta_k(s) \), and the torus \(T_s \) has points \(T_s(k) = \{ t \in M^* : \mathbb{N}_k t = 1 \} \).

A similar method works for the stable regular semi-simple classes \(s \) in the group \(G = F_4 \). Here the projection of \(\rho_s \) to \(W_{ss} \cong S_3 \) determines an étale cubic algebra \(K \), and the characteristic polynomial of \(s \) on the 26-dimensional representation of \(G \) factors over \(K \) as \((z - 1)^2 h_8(z) g_{16}(z) \). This allows one to reduce the calculation of \(T_s \) to tori in the quasi-split long root subgroup \(H_s = \text{Spin}_8^K \).

REFERENCES

Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
E-mail address: gross@math.harvard.edu