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CONJUGACY CLASS ASYMPTOTICS, ORBITAL INTEGRALS,
AND THE BERNSTEIN CENTER: THE CASE OF SL(2)

ALLEN MOY AND MARKO TADIĆ

Abstract. The Bernstein center of a reductive p-adic group is the algebra
of conjugation invariant distributions on the group which are essentially com-
pact, i.e., invariant distributions whose convolution against a locally constant
compactly supported function is again locally constant complactly supported.
In the case of SL(2), we show that certain combinations of orbital integrals
belong to the Bernstein center and reveal a geometric reason for this phenom-
enon.

1. Introduction

1.1. Suppose F is a non-archimedean local field and G = G(F ) the F -rational
points of a reductive group G. The Bernstein center Z(G) of G, introduced by
J. Bernstein, has a formulation as the space of G-invariant distributions on G
which are essentially compact. A G-invariant distribution D is in the center if for
all f ∈ C∞

c (G), the convolution of D and f ,

D � f := x→ D(λx(f̌))

is in C∞
c (G). Here f̌(g) := f(g−1), and λx(f)(g) := f(x−1g) is left translation by x.

An elementary example of such a distribution is the delta distribution associated to
a central element of G. The space of G-invariant essentially compact distributions
is vast. For example, if G is semisimple and π is an irreducible supercuspidal
representation ofG, then the character Θπ of π belongs to Z(G). But supercuspidal
characters are rather mysterious objects, and indeed so too is the Bernstein center.
Besides the delta distributions, and characters of supercuspidal representations,
only one other explicit distribution can be found in the literature. Suppose ψ is
a nontrivial additive character of the p-adic field F . In the notes [Bn], Bernstein
mentions that the distribution on SL(n, F ) represented by the function

g �→ ψ(Trace(g))

is essentially compact and thus lies in the Bernstein center.
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1.2. In [MT], the authors gave a description of the Bernstein center in terms of
G-invariant functions which are locally L1 with respect to the Haar measure of G.
In the case of SL(2, F ), we computed, via the Plancherel measure, a basis of such
functions. However, a natural question, already asked by Bernstein in [Bn], is the
following: Is there a natural source ofG-invariant essentially compact distributions?

It is known distributions in the Bernstein center are tempered. A very natural,
important, and relatively simple source of G-invariant tempered distributions on
reductive groups are orbital integrals. Such integrals are important for harmonic
analysis of the group, and applications to automorphic forms. It is elementary that
an orbital integral is essentially compact if and only if the orbit is compact. In
particular, if G has no compact factors, then aside from the delta distributions on
central elements, orbital integrals do not belong to the Bernstein center.

1.3. Suppose F is a non-archimedean local field of characteristic zero, i.e., a p-adic
field, and also of odd residual characteristic. Let G = SL(2, F ). One striking dis-
covery we announce here is that certain linear combinations of orbital integrals, in
particular certain differences, are essentially compact and therefore in the Bernstein
center.

We give a consequence. Let OI be the space of G-invariant distributions spanned
by the orbital integrals of regular elements. Then

(i) dimC OI/(OI ∩ Z(G)) ≤ 4.
(ii) The unipotent orbital integrals generate OI over OI ∩ Z(G).

Thus, unipotent orbital integrals play a very important role in describing other
orbital integrals. This is reminiscent of a similar role they play in the Shalika germ
expansion.

1.4. In considering when a difference of orbital integrals lies in the Bernstein center
a crucial notion is that of asymptotic conjugacy classes. Two conjugacy classes O1

and O2 of a reductive group G(F ) are called asymptotic, if there exist sequences
{gi}i∈N in O1 and {hi}i∈N in O2, tending to infinity, such that

lim
i→∞

gih
−1
i = 1.

Two conjugacy classes O1 and O2 of G(F ) are said to have the same asymptotic
behavior at infinity, if given any sequence {gi}i∈N in O1 which tends to infinity,
there exists a sequence {hi}i∈N in O2, so that lim

i→∞
gih

−1
i = 1, and vice versa.

An equivalent formulation is given any open subgroup J , there exists a bounded
set M = M(O1,O2, J) ⊂ G(F ) such that if g1 ∈ O1 ∩ (G(F )\M) (resp. g2 ∈
O2 ∩ (G(F )\M)), then g1J ∩ O2 (resp. g2J ∩ O1) is nonempty.

In the case of SL(2, F ), we show two regular conjugacy classes have the same
asymptotical behavior at infinity precisely when the two conjugacy classes have the
same set of asymptotic unipotent classes. In particular, this allows us to show the
conjugacy classes of two regular elements of non-conjugate maximal tori cannot
have the same asymptotic behaviour at infinity. When the conjugacy classes of
two regular elements of a fixed maximal torus have the same asymptotic behaviour
at infinity, we show the difference of their normalized orbital integrals lies in the
Bernstein center. For example, any two hyperbolic regular elements have the same
asymptotic behaviour at infinity. Therefore, the difference of their normalized or-
bital integrals lies in the Bernstein center. We in fact prove stronger results. Their
statements can be found in Sections 4, 5, and 6.
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1.5. Our study of orbital integrals is based on the computation of the Fourier
transforms of orbital integrals by Sally and Shalika in [SS3].

1.6. Now we describe the paper according to its sections. In Section 2 we introduce
the two notions of orbits being asymptotic at infinity and having the same asymp-
totic behavior at infinity. We then study asymptotic relations between semisimple
and unipotent conjugacy classes. In Section 3 we explain a simple criterion for an
invariant tempered distribution to belong to the Bernstein center. In Section 4 we
study differences of orbital integrals on the hyperbolic (split) torus. In Section 5
we deal with elliptic tori. Section 6 is devoted to unipotent orbital integrals, and
their relationship to semisimple orbital integrals. In Section 7, we reprove some of
our main results on certain orbital integral differences being in the Bernstein center
in a different rather elegant geometric way which we believe partly explains the
situation, in particular, why it seems to be a p–adic phenomenon. This last section
is part of some joint work with Dan Barbasch.

2. The asymptotic behavior of conjugacy classes

2.1. Two notions of asymptotical behavior at infinity.

2.1.1. Let F be a non-archimedean local field with modulus character | |F (so that
d(ax) = |a|Fdx for any a ∈ F× and dx a Haar measure on F ). Let G = G(F )
be the F -rational points of a reductive group G. For γ ∈ G, let O(γ) denote the
conjugacy class of γ.

2.1.2. Definition. (i) A sequence {gi}i∈N ⊂ G approaches infinity if, given
any bounded, i.e., precompact, set C in G, there exists n(C) ∈ N, so that
gi ∈ G\C for i > n(C).

(ii) Suppose Qx ⊂ G and Qy ⊂ G is each a finite union of conjugacy classes of
G. We say Qx and Qy are asymptotic (at infinity) if there exist sequences
gi ∈ Qx and hi ∈ Qy, such that each sequence tends to infinity and

lim
i→∞

gih
−1
i = 1

(iii) Two subsets Qx ⊂ G and Qy ⊂ G, each a finite union of conjugacy classes of
G, have the same asymptotic behavior at infinity if given any open compact
subgroup J ⊂ G, there exists a compact set M = M(J,Qx,Qy) ⊂ G so that
if

g ∈ Qx ∩ (G\M) (resp. h ∈ Qy ∩ (G\M)),

then gJ ∩ Qy (resp. hJ ∩ Qx) is nonempty.

2.1.3. Remarks. (i) Let G = KAK be a Cartan decomposition of G. Then,
a sequence {gi}i∈N ⊂ G approaches infinity if the Cartan decompositions
gi = kiaik

′
i, ki, k

′
i ∈ K and ai ∈ A have the property that the ai approach

infinity in A as i → ∞, i.e., if C is any compact subset of A, there exists
n(C) ∈ N, so that ai ∈ A\C for i > n(C).

(ii) It is elementary that a sequence {gi}i∈N ⊂ SL(n, F ) tends to infinity if and
only if max{|ai|F , |bi|F , |ci|F , |di|F } tends to infinity (in R), where gi =[
ai bi
ci di

]
.
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(iii) We shall shortly see that for G = SL(2), any regular hyperbolic conjugacy
class is asymptotic to any nontrivial unipotent class. However, a non-
compact hyperbolic conjugacy class does not have the same asymptotic
behavior at infinity as a nontrivial unipotent class. Intuitively, the two
classes are asymptotic to each other in certain directions but not others.

2.2. Notation.

2.2.1. For the rest of this paper we assume F is a non-archimedean local field of
characteristic zero, i.e., a p-adic field. Set

G = SL(2, F ).

We establish some notation. Set
RF := ring of integers of F,
pF := maximal ideal of RF ,

�F := generator of pF ,

qF := card (RF /pF ),

K := SL(2,RF ),

h(a) :=
[
a 0
0 a−1

]
,

A∅ := { h(a) | a ∈ F× },

n(x) :=
[
1 x
0 1

]
,

u(y) :=
[
1 0
y 1

]
,

N∅ := {n(x) |x ∈ F } .
2.2.2. We have the Iwasawa decomposition

G = BK = N∅A∅K .

2.2.3. Let ξ run over representatives of F×/(F×)2. The elements n(ξ), form a set
of representatives for the nontrivial unipotent classes of SL(2, F ). The centralizer
of n(ξ) (ξ �= 0) in SL(2, F ) is {±I}N∅; thus,

g{±I}N∅ ↔ gn(x)g−1

identifies the coset space G/{±I}N∅ with the conjugacy class O(n(x)) of n(x).

2.2.4. Suppose A ∈ F . Let p(t) = t2 −At+ 1, and let Qp(t) denote the union of the
conjugacy classes of G whose characteristic polynomials equal p(t). The assumption
that F is p-adic—characteristic zero—means Qp(t) is a finite union of G conjugacy
classes.

Recall the elementary fact that the characteristic polynomial pg(t) of an element
g ∈ G is completely determined by its trace tr(g), i.e., pg(t) = t2 − tr(g)t+ 1.

By definition, g is hyperbolic if the roots λ, λ−1 of pg(t) belong to F and g
is diagonalizable. An element g is elliptic if its characteristic polynomial pg(t) is
irreducible in F [t]. In the next subsection, we wish to analyze conjugacy class
asymptotics in G. Suppose γ ∈ G is a regular element, i.e., the F -dimension of
the centralizer CG(γ) of γ in G is 1. We shall see that G has a decomposition
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as G = CG(γ)HK where H is either a subgroup or the product of a subgroup
and a finite set. Such a decomposition will be useful to us because it satisfies the
following property: a sequence {gi}i∈N ⊂ O(γ) tends to infinity precisely if the
decompositions gi = γ′ihiki with γ′i ∈ CG(γ), hi ∈ H and ki ∈ K have the sequence
{hi}i∈N ⊂ H tending to infinity.

2.3. Unipotent classes.

2.3.1. In the group GL(2, F ), there is a single nontrivial unipotent conjugacy class,
i.e., O(n(x)) = O(n(y)) (x, y ∈ F×). The SL(2, F ) nontrivial unipotent classes are
in a natural bijection with the double cosets SL(2, F )\GL(2, F )/ZN∅, where Z is
the center of GL(2, F ). The determinant map is a bijection of the double cosets to
F×/(F×)2.

2.3.2. Suppose ν = n(z) is a nontrivial unipotent element. For g ∈ G = KA∅ N∅ ,
let g = k h(α)n(x) be an Iwasawa decomposition of g. Then,

gn(z)g−1 = k h(α)n(x)n(z)n(−x)h(α−1) k−1 = k n(α2z) k−1 .

In particular, a sequence gin(z)g−1
i ⊂ O(ν) tends to infinity precisely if the Iwasawa

decompositions gi = kih(αi)n(xi) of the gi’s have the property that αi → ∞ (in
F×) as i→ ∞.

2.3.3. Proposition. (i) Fix x ∈ F×, and let ν = n(x). Suppose A ∈ F , and
p(t) ∈ F [t] is the quadratic polynomial p(t) := t2 − At + 1. If ε > 0, then
there exists N = N(x, ε) with the following property: If |α|F > N (α ∈ F ),
then there exists y ∈ F with |y|F < ε so that κ := h(α) ν h(α)−1 u(y)
has characteristic polynomial p(t), i.e., κ has trace A. Rephrased: Let
Qp(t) be as in paragraph (2.2.4). Suppose O is a unipotent conjugacy class
and J is an open subgroup of G. Then there exists a bounded subset M =
M(O,Qp(t), J) ⊂ G such that if g ∈ O∩(G\M), then gJ∩Qp(t) is nonempty.

(ii) Two distinct nontrivial unipotent conjugacy classes O(n(x)) and O(n(y))
in G are not asymptotic at infinity.

(iii) Let −I ∈ SL(2, F ) be minus the identity. Suppose x ∈ F×, then the conju-
gacy classes O(n(x)) and O(−I ·n(−x)) have the same asymptotic behavior.

Proof. We note that

κ := h(α)n(x)h(α)−1u(y) =
[
1 + α2xy α2x

y 1

]
.

The trace tr(κ) of κ equals A when

y =
A− 2
xα2

.

Assertion (i) follows immediately.
To prove statement (ii), we argue by contradiction. Suppose O(n(x)) and O(n(y))

are distinct unipotent classes and they are asymptotic. Then, there exist sequences
{vi}i∈N in O(n(x)) and {wi}i∈N in O(n(y)), both unbounded, such that

lim
i→∞

viw
−1
i = 1.

Use the Iwasawa decomposition to write

vi = gin(x)g−1
i = kih(ai)n(x)h(a−1

i )k−1
i = ki

[
1 a2

ix
0 1

]
k−1
i .
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The hypothesis vi → ∞ as i → ∞ is equivalent to |ai| → ∞ as i → ∞. Similarly
write

wi = γin(y)γi−1 = κih(αi)n(y)h(αi−1)κi−1 = κi

[
1 α2

i y
0 1

]
κ−1
i ,

where |αi| → ∞ as i→ ∞.
By passing to subsequences (first of {vi}i∈N, and then of {wi}i∈N), we may

assume that the sequences {ki}i∈N and {κi}i∈N converge. Denote

�i : = viw
−1
i = ki

[
1 a2

ix
0 1

]
k−1
i κi

[
1 −α2

i y
0 1

]
κ−1
i ,

mi =
[
Ai Bi
Ci Di

]
:= k−1

i κi ,

m = lim
i→∞

mi =
[
A′ B′

C′ D′

]
∈ K.

Since �i → 1, we have[
1 a2

ix
0 1

]
mi

[
1 −α2

i y
0 1

]
→ m =

[
A′ B′

C′ D′

]
,

i.e., [
Ai + a2

i xCi −α2
i yAi − a2

ixα
2
i yCi +Bi + a2

ixDi

Ci −α2
i yCi +Di

]
→
[
A′ B′

C′ D′

]
.

From the diagonal entries of the limit we see that a2
i xCi → 0 and α2

i y Ci → 0. In
particular, Ci → 0, so C′ = 0. If we combine the latter with the condition m ∈ K
we conclude A′ and D′ are units in RF and A′D′ = 1. If we now consider the (1,2)
entry, we see that

ya2
i (Ai + a2

i xCi)
(
−
(
αi
ai

)2

+
x

y

Di

Ai + a2
ixCi

)
→ 0 .

Since y �= 0, |ai|F → ∞ and Ai + a2
ixCi → A′ (�= 0), we get

−
(
αi
ai

)2

+
x

y

Di

Ai + a2
ixCi

→ 0 .

Now, x
y

Di

Ai + a2
ixCi

→ x
y
D′
A′ = x

yD
′2. Therefore,

(
αi

ai

)2

→ x
yD

′2. Since the squares

in F× form a closed subset of F×, x
yD

′2 is a square, i.e., x
y is a square. This

contradicts the initial assumption that O(n(x)) and O(n(y)) are distinct orbits.
To prove assertion (iii), we use the following identity:

[
1 a2x
0 1

] x 0

1
y−x
a2x

1
x

[−1 a2y
0 −1

] x 0

1
y −x
a2x

1
x


−1

=


−1
xy 0

−1+2xy−x2y2

a2x2y −xy

 .

Suppose J is an open compact subgroup. If we take xy = −1, then for a sufficiently
large the right-hand side belongs to J . This implies there is a bounded set M =
M(O(n(x)),O(−I · n(−1/x)), J) such that if h1 ∈ O(n(x))\M (resp. h2 ∈ O(−I ·
n(−1/x))\M), then h1J∩O(−I ·n(−1/x)) (resp. h2J∩O(n(x))) is nonempty. Thus,
O(n(x)) and O(−I · n(−x)) have the same asymptotical behavior. �
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2.3.4. Remarks. The claim (ii) of Proposition 2.3.3 can be rephrased as follows:
Suppose O1 and O2 are distinct nontrivial unipotent conjugacy classes. Then, there
exists an open compact subgroup J ⊂ G and a bounded set M = M(J,O1,O2) so
that if ν1 ∈ O1\M (resp. ν2 ∈ O2\M), then ν1J ∩ O2 = ∅. (resp. ν2J ∩ O1 = ∅).
2.4. Hyperbolic classes.

2.4.1. The conjugacy class O(g) of a hyperbolic element g is completely determined
by its characteristic polynomial, i.e., O(g) = Qpg(t), where pg(t) = t2 − tr(g)t+ 1 is
the characteristic polynomial of g.

2.4.2. Suppose s = h(a) is a regular hyperbolic element in A∅ , so CG(s) = A∅ . For
g ∈ G, we use the Iwasawa decomposition to write it as g = kn(x)h(α). Then,
gsg−1 = kn(x)sn(−x)k−1. In particular, a sequence gisg−1

i ⊂ O(s) approaches
infinity precisely if the Iwasawa decompositions gi = kin(xi)h(αi) of the gi’s have
the property xi → ∞ (in F ) as i→ ∞.

2.4.3. Proposition. Suppose

s = h(a) =
[
a 0
0 a−1

]
is a regular element (i.e., a �= ±1). Then,

(i) Suppose A ∈ F , and p(t) ∈ F [t] is the quadratic polynomial p(t) := t2 −
At+ 1. If ε > 0, then there exists N = N(A, ε) with the following property:
If |x|F > N (x ∈ F ), then there exists y ∈ F with |y|F < ε so that
κ = n(x) s n(−x)u(y) has characteristic polynomial p(t), i.e., κ has trace
A. Rephrased: Suppose J is an open subgroup of G. Let Qp(t) be as in
(2.2.4). Then there exists a bounded subset M = M(O(s),Qp(t), J) ⊂ G
such that if g ∈ O(s) ∩ (G\M), then gJ ∩ Qp(t) is nonempty.

(ii) If ε > 0, then there exists N = N(s, ε) with the following property: If
|x|F > N (x ∈ F ), then there exists y ∈ F with |y|F < ε so that κ =
n(x) s n(−x)u(y) is conjugate to the unipotent element n(x(a−1 − a)).
Rephrased: Suppose J is an open subgroup of G. Then there exists a
bounded subset M = M(O(s), J) ⊂ G such that if g ∈ O(s) ∩ (G\M),
then gJ contains a unipotent element. The conjugacy class of the unipo-
tent element depends on the choice of g, and it is possible, by varying g, to
get all nontrivial unipotent conjugacy classes.

(iii) Suppose ν = n(z) is a nontrivial unipotent element. If ε > 0, then there
exists N = N(z, ε) with the following property: If |α|F > N (α ∈ F×), then
there exists y ∈ F with |y|F < ε so that

τ := h(α)νh(α)−1u(y) =
[
1 α2z
0 1

] [
1 0
y 1

]
lies in O(s) .

Rephrased: Suppose J is an open subgroup of G. Then there exists a
bounded subset M = M(O(ν), J) ⊂ G such that if g ∈ O(ν) ∩ (G\M),
then gJ ∩ O(s) is nonempty.

2.4.4. Remarks. (i) Part (i), in particular, implies the any two regular hyper-
bolic conjugacy classes have the same asymptotic behavior at infinity.
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(ii) Part (ii) can be rephrased intuitively by saying as an element moves in a
regular hyperbolic orbit towards infinity, the element will become close to
a nontrivial unipotent element, and the conjugacy class of the unipotent
element depends on how one moves to infinity.

(iii) Parts (ii) and (iii) imply any regular conjugacy class O(s) has the same
asymptotic behavior at infinity as the variety Q(t−1)2 of all unipotent ele-
ments.

Proof. We note that

n(x)sn(−x) =
[
a x(a−1 − a)
0 a−1

]
and

n(x)sn(−x)u(y) =
[
a+ yx(a−1 − a) x(a−1 − a)

a−1y a−1

]
.

The trace of κ := n(x)sn(−x)u(y) is

tr(κ) = ( a+
1
a

) + x y (
1
a
− a) ,

so tr(κ) = A if and only if

y =
1
x

A− (a−1 + a)
a−1 − a

.

Statement (i) follows immediately.
To prove (ii), note that κ is unipotent if and only if tr(κ) = 2. This occurs

precisely when

y =
1
x

2 − (a−1 + a)
a−1 − a

.

Note that if

v =
[
α β
γ δ

]
∈ SL(2, F ) ,

then

v n(t) v−1 =
[
1 − αγt α2t
−γ2t 1 + αγt

]
.

In particular, if g ∈ SL(2, F ) is conjugate to a nontrivial n(t), and the (1,2)-
entry g1,2 of g is nonzero, then g1,2t

−1 is a square. It follows that when κ =
n(x)sn(−x)u(y) is unipotent, it is conjugate to n(x(a−1−a)). Statement (ii) follows.

To prove (iii), note that

τ := h(α)νh(α)−1u(y) =
[
1 zα2

0 1

] [
1 0
y 1

]
=
[
1 + zα2y zα2

y 1

]
.

So, we see τ belongs to O(s) if and only if tr(τ) = 2+ zα2y is equal to a+ a−1, i.e.,

y =
a+ a−1 − 2

zα2
.

Statement (iii) follows immediately from this. �

2.5. Elliptic classes.

2.5.1. To determine the asymptotic properties of an elliptic orbit in SL(2, F ) we
simplify the situation. We assume F is p-adic and has odd residual characteristic.
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2.5.2. Let εF be a primitive (q − 1)-th root of unity in F . Then

F× = {�k
F | k ∈ Z } × (1 + pF ) × { εiF | 0 ≤ i ≤ qF − 1 },

and the four cosets of (F×)2 in F× have representatives 1, εF , �F and εF�F .
For v ∈ { εF , �F εF�F }, let Ev := F [

√
v], a quadratic extension of F . The

field F has exactly three quadratic extensions (up to F -isomorphisms), and they
are these Ev’s.

Let

tv(x, y) :=
[
x y
vy x

]
.

Then, x + y
√
v → tv(x, y) is an embedding of Ev (resp. E×

v ) into the 2 × 2 ma-
trices M(2, F ) (resp. GL(2, F )), and any elliptic torus of GL(2, F ) is conjugate to
precisely one of these three E×

v ’s. In SL(2, F ), a conjugacy class of elliptic torus
is determined by an elliptic torus E×

v in GL(2, F ) and an element of the double
coset SL(2, F )\GL(2, F )/NGL(2,F )(E×

v ). Here, NGL(2,F )(E×
v ) is the normalizer of

E×
v . The determinant maps the double cosets bijectively with the cosets in F× of

the subgroup generated by −1 and the norms NEv/F (E×
v ). If Ev is an unramified

extension, the double coset space has two elements. If Ev is a ramified extension,
the double coset space has two (resp. one) elements precisely when −1 is a square
(resp. non-square).

2.5.3. We conclude an elliptic torus in SL(2, F ) has the form

Tv = { tv(x, y) | x, y ∈ F , x2 − vy2 = 1 },
where v ∈ F×\(F×)2, and furthermore, there are six (resp. four) conjugacy classes
of elliptic tori if −1 ∈ (F×)2 (resp. −1 �∈ (F×)2).

Case −1 ∈ (F×)2: The six conjugacy classes of elliptic tori correspond to

(2.5.3a) v ∈ {�F , ε
2
F�F , εF�F , ε

−1
F �F , εF , εF�

2
F } .

The extension F [
√
v] is unramified when v ∈ {εF , εF�2

F } and ramified when v ∈
{�F , εF�F , ε

2
F�F , ε

−1
F �F }.

For any of these tori T , the SL(2, F ) Weyl group NSL(2,F )(T )/T has order two.

Case −1 /∈ (F×)2: Then −εF ∈ (F×)2. The four conjugacy classes of elliptic
tori correspond to

v = �F (or ε2F�F ), εF�F (or ε−1
F �F ), εF and εF�2

F .

Indeed, if −εF = a−2, then[
a 0
0 a−1

] [
0 εF

�F εF 0

] [
a−1 0
0 a

]
=
[

0 −1
−ε2F�F 0

]
.

In particular, T�F = Tε2F�F
. Similarly, TεF�F = Tε−1

F �F
.

For any of these tori T , the SL(2, F ) Weyl group NSL(2,F )(T )/T has order two
when the quadratic extension Ev is unramified and is trivial when the Ev is ramified.

We note, in both cases, that when the SL(2, F ) Weyl group NSL(2,F )(T )/T is
of order two, then the Weyl action of the torus T is the Galois action x + y

√
v →

x− y
√
v.
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2.5.4. Suppose g = tv(x, y) is a nontrivial elliptic element in G. Let pg(t) be
the characteristic polynomial of g, and in the notation of paragraph (2.2.4), let
Qpg(t) be the elements in G with characteristic polynomial pg(t). Let E denote the
splitting field of pg(t). The group GL(2, F ) acts, by conjugation, transitively on
Qpg(t). The set Qpg(t) consists of two G conjugacy classes, and a conjugacy class is
determined by a cosetG\GL(2, F )/CGL(2,F )(g). Here, CGL(2,F )(g), an elliptic torus
in GL(2, F ) is the centralizer of g. The determinant maps these cosets bijectively
with F×/NE/F (E×). In particular, if p(t) = t2 −At+ 1 is an irreducible quadratic
polynomial, then there are two G conjugacy classes with characteristic polynomial
p(t). If c ∈ F×\NE/F (E×), the two G conjugacy classes are related in GL(2, F )
by conjugation by the element [

c 0
0 1

]
.

2.5.5. Proposition. Suppose F is characteristic zero, odd residual characteristic,
and s = tv(x, y) ∈ G is a regular elliptic element. Let E = F [

√
v], and NE/F (E×) =

(F×)2 ∪ β(F×)2.

(i) Suppose A ∈ F , and p(t) ∈ F [t] is the quadratic polynomial p(t) := t2−At+
1, and suppose J is an open subgroup of G. Then there exists a bounded
subset M = M(O(s), J) ⊂ G such that if g ∈ O(s) ∩ (G\M), then gJ
contains an element with characteristic polynomial p(t).

(ii) Suppose J is an open subgroup of G. Then, there exists a bounded set
M = M(O(s), J) so that if g ∈ O(s) ∩ (G\M), then the intersection of
gJ with the unipotent variety is contained in the union O(n(y))∪O(n(βy)).
Furthermore, for any bounded set K, there exists h1, h2 ∈ O(s)∩(G\K) such
that h1J∩O(n(y)) (resp. h2J∩O(n(βy))) is nonempty. Thus, the conjugacy
class O(s) is asymptotic to the unipotent orbits O(n(y)) and O(n(βy)) and
no other unipotent orbits.

(iii) Conversely, suppose η = n(z) is a nontrivial unipotent element, J is an
open compact subgroup, and s = tv(x, y) is an elliptic element such that
y ∈ zNE/F (E×). Then, there exists a bounded set M = M(O(η),O(s), J)
so that if g ∈ O(η) ∩ (G\M), then gJ ∩ O(s) is nonempty.

(iv) Two elliptic elements tv(x, y), and t′v(x′, y′) is G have the same asymptotic
behavior at infinity if and only if v/v′′ ∈ F×)2, and y/y′ is a norm of
Ev = F [

√
v].

2.5.6. Before we proceed with the proof, we observe two types of decompositions
of SL(2, F ).

Let B denote the Bruhat-Tits building of SL(2, F ). The fixed point set of Tv in B
is either a singleton point {x}, when Tv is an unramified torus, or an alcove, when Tv
is a ramified torus. For the latter, take {x1, x2} to be the two vertices of the alcove.
When Tv is unramified, let K = Stab(x) denote the stabilizer of x in SL(2, F ).
When Tv is a ramified torus, let K denote either Stab(x1) or Stab(x2). Let A
be any split torus of SL(2, F ) whose associated apartment in B contains the fixed
point of K, and when Tv is ramified the alcove. Let N(Tv) denote the normalizer
of Tv. The Weyl group N(Tv)/Tv is order at most two and its conjugation action
on Tv is the Galois automorphism a+ b

√
v �→ a− b

√
v (i.e., tv(a, b) �→ tv(a,−b)).

We have the following decompositions of G = SL(2, F ):
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If Tv is unramified, then

(2.5.6a) G = NG(Tv)AK.

If Tv is ramified, then

(2.5.6b) G = TvAK.

The proof of the two decompositions is elementary. Let x be the vertex in B fixed
by K. The point x is fixed by NG(Tv). If g ∈ G, consider the point g · x. We can
choose h ∈ NG(Tv) such that h · (g · x) lies in the apartment of A, and then take
a ∈ A so that a ·(h ·(g ·x)) = x. Obviously ahg ∈ K, i.e., g ∈ NG(Tv)AK. When Tv
is ramified, the element h can be taken in Tv. This proves the two decompositions.

2.5.7. We now prove Proposition 2.5.5.

Proof. We use the decompositions (2.5.6a) and (2.5.6b) to determine the behavior
of g−1sg at infinity. For convenience, we choose a basis so that the split torus is
the group of diagonal matrices A∅ . Decompose g ∈ G as

g = hh(α) k , where h ∈ NG(Tv) , k ∈ K .

We make some observations:
(1) Conjugation of s = tv(x, y) by h results in either s or tv(x,−y).
(2) As a function of g, the conjugate g−1sg tends to infinity if and only if

max{ |α|F , |α−1|F } → ∞ .

We have

h(α)−1tv(x, y)h(α) =
[

x α−2y
α2vy x

]
.

(3) The product

P = h(α)−1tv(x, y)h(α)u(p)

=
[

x α−2y
α2vy x

]
u(p)

=
[
x+ pα−2y α−2y
α2vy + px x

]
,

has trace A precisely when

p = α2A− 2x
y

.

In the case when A = 2, and p is specified as in the previous line, then the
product P is unipotent and is conjugate to n(y).

(4) We have

P = h(α)−1tv(x, y)h(α)n(r) =
[

x α−2y
α2vy x

] [
1 r
0 1

]
=
[

x rx + α−2y
α2vy rα2vy + x

]
,



338 ALLEN MOY AND MARKO TADIĆ

so tr(P ) = A precisely when

r =
A− 2x
α2vy

.

When P is unipotent, it is conjugated to u(vy), i.e., to n(−vy).
Statement (i) of Proposition 2.5.5 is a consequence of the above four observations.

By (2), g−1sg tends to infinity if and only if max{|α|F , |α−1|F } → ∞. Then,
observations (3) and (4) treat |α−1|F → ∞ and |α|F → ∞ respectively.

To prove statement (ii), we show that if O(s) is asymptotic to a unipotent orbit
O(n(t)), then t ∈ yNE/F (E×). We show this in two stages. The first is to show
that for any open compact subgroup J , there is a bounded set M so that if h ∈
O(s)∩ (G\M), then hJ ∩ (O(n(y))∪O(βn(y))) is nonempty. The second stage is to
assert that distinct nontrivial unipotent classes are not asymptotic at infinity (see
Proposition 2.3.3), implies we can choose M bounded so that if h ∈ O(s)∩(G\M),
then hJ does not meet any of the other two nontrivial unipotent conjugacy classes.

Write g = hh(α)k as in (2.5.6a). Now, hsh−1 is either s or tv(x,−y), and the
latter can happen only when E is unramified or −1 ∈ (F×)2. As already mentioned
g−1sg tends to infinity if and only if either |α|F or |α−1|F tends to infinity.

Case hsh−1 = s: If |α|F is sufficiently large, then observation (4) says g−1sgJ
meets O(n(−vy)). If |α−1|F is sufficiently large, then observation (3) says g−1sgJ
meets O(n(y)). In particular, −vy, y ∈ yNE/F (E×).

Case hsh−1 = tv(x,−y): If |α|F is sufficiently large, then observation (4) says
g−1sgJ meets O(n(vy)). If |α−1|F is sufficiently large, then observation (3) says
g−1sgJ meets O(n(−y)). If E/F is unramified or −1 ∈ (F×)2, then vy,−y ∈
yNE/F (E×).

Thus, we have established our first assertion. As already mentioned, our second
assertion that there exists a bounded set M such that if h ∈ O(s) ∩ (G\M), then
hJ does not meet any of the other two nontrivial unipotent conjugacy classes now
follows from our first assertion and Proposition 2.3.3. This proves statement (ii).

To prove statement (iii), let p(t) = t2−tr(s)t+1 be the characteristic polynomial
of s. By Proposition 2.3.3(ii), there is a bounded set L, dependent on p(t), O(n(z)),
and J so that if g ∈ O(n(z)) ∩ (G\L), then gJ ∩ Qp(t) is nonempty. Now Qp(t) is
a union of two conjugacy classes. Let c ∈ F×\NE/F (E×). Representatives for the
two classes are

s = tv(x, y) and, s′ = t v
c2

(x, cy) .

Since z/y ∈ NE/F (E×), then z/(cy) /∈ NE/F (E×), and therefore, by statement (ii),
the conjugacy class O(s′) is not asymptotic to O(n(z)). Statement (iii) follows.

Statement (iv) follows from statements (i), (ii), (iii). �

2.6. Remark. It follows from Propositions 2.3.3, 2.4.3 and 2.5.5 that if γ1 and γ2

are two semisimple elements in G, then the conjugacy classes O(γ1) and O(γ2) have
the same asymptotic behavior at infinity, if and only if the unipotent classes to
which they are asymptotic are the same.

2.7. Shalika germs.

2.7.1. For an elliptic torus T and unipotent conjugacy class O, the Shalika germ
corresponding to T and O will be denoted cTO. For a quadratic extension E of F ,
the image of the norm mapping from E× is a subgroup of index 2 in F×, and
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therefore determines a character of order 2 of F×, which will be denoted by sgnE.
Now Lemma 2.4 in [SS3] shows that on regular elements of an elliptic torus Tv and
ξ ∈ F× we have

cTv

O(n(ξ))(tv(x, y)) = (1/2)(1 + sgnF [
√
v](yξ)).

2.7.2. Corollary. Suppose T is an elliptic torus, and O is a nontrivial unipotent
orbit in the group SL(2, F ). For t ∈ Treg, the value cTO(t) of the Shalika germ cTO
equals 1 if the orbits O(t) and O are asymptotic, and 0 if they are not.

Proof. We can replace T with one of its conjugates, and assume T = Tv. By Lemma
2.4 in [SS3] (see above), cTv

O(n(ξ))(tv(x, y)) is either 0 or 1, and it is 1 if and only if

sgnF [
√
v](y) = sgnF [

√
v](ξ).

By Proposition 2.5.5, the conjugacy class O(tv(x, y)) is asymptotic to O(n(ξ)) if
and only if ξ ∈ yNE/F (E×). This proves the Corollary. �

3. Fourier transform of invariant tempered distributions

3.1. The Bernstein Center.

3.1.1. In this subsection, let G = G(F ) be the F -rational points of a reductive group
G. Let Z(G), denote the Bernstein center of G, i.e., the algebra of G-invariant
essentially compact distributions. Recall a distribution T is essentially compact if
for all f ∈ C∞

c (G), the convolution

D � f := x→ D(λxf̌) (here f̌(g) := f(g−1))

belongs to C∞
c (G). The Bernstein center acts on any smooth representation (π, Vπ)

as follows: If v ∈ Vπ , let J be an open compact subgroup of Stab(v), and eJ ∈
C∞
c (G) the idempotent which is the characteristic function of J divided by the

Haar measure of J . In particular, π(eJ )v = v. If T ∈ Z(G), then T � eJ ∈ C∞
c (G),

and we set
π(T )v := π(T � eJ) v .

The definition is well defined. To see this, suppose L is an open subgroup of J ,
then eJ = eJ � eL = eL � eJ ; in particular, (eJ − eL) is an idempotent. Thus

π(T � (eJ − eL)) v = π(T � (eJ − eL) � (eJ − eL)) v

= π(T � (eJ − eL))π(eJ − eL) v
= 0 .

It follows π(T � eJ)v = π(T � eL)v for any open subgroup L of J . That π(T )v is
well defined is then clear.

3.1.2. Let G̃ denote the smooth dual of G. Suppose π ∈ G̃ and T ∈ Z(G). Then
π(T ) acts as a scalar χπ(T ) on Vπ . If we fix π and vary T , the ring homomorphism
χπ : Z(G) → C is called the infinitesimal character of π. Alternatively, if we fix T
and vary π, we get a function

T̂ : G̃→ C

T̂ (π) := χπ(T ) .

For π ∈ G̃ and f ∈ C∞
c (G), set

f̂(π) := trace(π(f)) = Θπ(f) .
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Here, Θπ is the character of π (considered as a distribution). Let Ĝt denote the
tempered dual of G, and let µPL denote the Plancherel measure on Ĝt. From [BD]
we know

T (f) =
∫
Ĝt

f̂(π̃) T̂ (π) dµPL(π).

Thus, the function π �→ T̂ (π) := χπ(T ) on Ĝt is just the Fourier transform of T .
More generally, a measure µτ on Ĝt is the Fourier transform (measure) of a

G-invariant distribution T on G if

T (f) =
∫
Ĝt

f̂(π̃) dµτ (π) for all f ∈ C∞
c (G) .

A function τ : Ĝt → C which is locally integrable with respect to the Plancherel
measure, is called the Fourier transform of a G-invariant distribution T on G if

T (f) =
∫
Ĝt

f̂(π̃) τ(π) dµPL(π) for all f ∈ C∞
c (G) .

In particular, the constant function τ = 1 (µτ = µPL), is the Fourier transform
(Fourier transform measure) for the G-invariant distribution of the delta function
δ1 at the identity of G.

3.1.3. Denote the space of all infinitesimal characters of representations in G̃ by
Ω(G). We recall [BD]:

(i) The space Ω(G) is also naturally the quotient of G̃ by the equivalence
relation π ∼ π′ if χπ = χπ′ . Let χ denote the quotient map G̃→ (G̃/ ∼)
= Ω(G).

(ii) The quotient Ω(G) is naturally a complex algebraic variety. If T ∈ Z(G),
the Fourier transform T̂ : π → χπ(T ), factors to a function Ω(G) → C. For
convenience, we also denote it as T̂ , so

T̂ : Ω(G) → C .

(iii) If T ∈ Z(G), the Fourier transform T̂ , as a function on the complex variety
Ω(G), is a regular function. Furthermore, T �→ T̂ is an isomorphism of
Z(G) onto the space of all regular functions on Ω(G).

(iv) The image of Ĝt under the quotient map χ : G̃ → (G/ ∼) = Ω(G) is
Zariski dense in Ω(G). In particular, T̂ : Ω(G) → C for T ∈ Z(G) is
completely determined by its restriction on χ(Ĝt).

3.1.4. Assume now
G = SL(2, F ).

If Ω is a connected component of Ω(G), let Ĝt(Ω) denote the tempered irreducible
representations with infinitesimal character belonging to Ω. Recall that space of
functions f̂ , f ∈ C∞

c (G), is dense, with respect to the supp norm, in the space
of continuous (bounded) functions on Ĝt with support in Ĝt(Ω) without reducible
principal series (recall that their Plancherel measure is zero). Therefore, if we have
an invariant tempered distribution T on G, and if its Fourier transform is given by a
function T̂ , then T determines function T̂ uniquely as a locally integrable function
on Ĝt.
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The group G, is somewhat special in that Ĝt has the property that an irreducible
tempered representation is essentially determined by its infinitesimal character. In-
deed, the only instances when different irreducible tempered representations have
the same infinitesimal character are constituents of reducible unitary principal se-
ries. For convenience, we let Ĝ′

t denote the subset of Ĝt obtained by removing
these irreducible tempered representations. In particular, since the constituents of
reducible unitary principal series has Plancherel measure zero, a locally integrable
function on Ĝt is determined by its restriction to Ĝ′

t. The utility of Ĝ′
t is that

it maps bijectively, under the infinitesimal character map, to its image in Ω(G).
Denote the image as Ω(G)′t. We now observe that if T is an invariant tempered
distribution on G, and T̂ is a locally integrable function on Ĝt, then T is in fact
uniquely determined by the restriction T̂ |Ĝ′

t.
Therefore, summing up the above observations we get that the following criterion

holds for G = SL(2, F ):

3.1.5. Criterion. (i) Suppose a distribution T lies in the Bernstein center.
Then the restriction of its Fourier transform T̂ to Ω(G)′t is a continuous
function. Furthermore, the function T̂ |Ω(G)′t extends uniquely to a regular
function on Ω(G).

(ii) Conversely, if T is an invariant tempered distribution on G such that the
restriction of its Fourier transform T̂ to Ω(G)′t is a continuous function, and
T̂ |Ω(G)′t extends to a regular function on Ω(G), then T is in the Bernstein
center.

3.2. Haar measure and the Plancherel Formula.

3.2.1. We recall the Plancherel Formula calculated by Sally and Shalika. Following
them, normalize additive Haar measure on F so that the measure of RF equals
one, and so pF has measure 1

qF
. Then, the first congruence subgroup K1 of K =

SL(2,RF ) has measure 1
q3F

and consequently the measure of K = SL(2,RF ) equals

meas(K) = |K/K1| · meas(K1) = |SL(2,FqF )| · 1
q3F

= (qF + 1)(qF − 1)qF · 1
q3F

= 1 − 1
q2F

.

3.2.2. The gamma function of F (which is a function on F̂ ) will be denoted by Γ.
Since F× = {�k

F | k ∈ Z } ×R×
F , the mapping

F̃× → C
× × R̂×

F

ξ �→ (ξ(�F ), ξ
∣∣
R×

F
)

is an isomorphism. Let ξ = ξ(s, θ) be the character of F× corresponding to (s, θ) ∈
C× ×R̂×

F for the above isomorphism. If 1 + pmF (m ≥ 1) is the conductor of θ, then

Γ(s, θ) = cθs
−m where cθ ∈ C

× satisfies |cθ| = q
−m/2
F .

For the trivial character 1R×
F

of R×
F we have

Γ(s, 1R×
F
) =

1 − q−1
F s−1

1 − s
.
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Denote the set of all classes of irreducible square integrable (resp. supercuspidal)
representations of G = SL(2, F ) by DS (resp. SC). Then the only representation
which is in DS but not in SC, is the Steinberg representation πSt.

3.2.3. Plancherel Formula. For f ∈ C∞
c (G), we have

(1 − 1
q2F

) f(1) =
∑
π∈DS

d(π) f̂ (π) +
1
2

(1 − 1
q2F

)
∫
ξ∈F̂×

1
|Γ(ξ)|2 f̂(π(ξ)) dξ

=
∑
π∈SC

d(π) f̂(π) + d(πSt) f̂(πSt)

+
1
2

(1 − 1
q2F

)
∫
ξ∈F̂×

1
|Γ(ξ)|2 f̂(π(ξ)) dξ,

where π(ξ) denotes the principal series representation Ind(ξ).

In the above formula the sum over DS (resp. SC) means the sum over all the
irreducible square integrable (resp. supercuspidal) classes of G. Furthermore, d(π)
denotes the formal degree of π (recall, Sally and Shalika normalize the Haar measure
so meas(K) = 1 − 1

q2F
), f̂(π) denotes the trace of π(f), i.e.,

f̂(π) = Θπ(f) :=
∫
G

f(g)Θπ(g) dg ,

πSt denotes the Steinberg representation of G, and dξ is the Haar measure of the
multiplicative group F̂× normalized so meas(R×

F ) = 1 − 1
qF

. The formal degree,
d(πSt), of the Steinberg representation is (qF − 1).

3.2.4. On Bernstein components which are not unramified, the Plancherel mea-
sure is constant. For these components, verification of Criterion 3.1.5 simplifies to
showing T̂ is regular on these components.

3.2.5. The Plancherel measure on the unramified Bernstein component is

δπSt d(πSt) +
1
2
q2F − 1
q2F

1
|Γ(ξ)|2 dξ

= δπSt d(πSt) +
1
2

(q2F − 1)
(1 − ξ(�F ))(1 − ξ(�F )−1)

(qF − ξ(�F ))(qF − ξ(�F )−1)
dξ .

4. Hyperbolic orbital integrals

4.1. Orbital integrals. Suppose t ∈ G = SL(2, F ). Let CG(t) be the centralizer of t
in G. For f ∈ C∞

c , let

Of (t) :=
∫
G/CG(t)

f(gtg−1)dg

be the orbital integral. Then f �→ Of (t) is an invariant tempered distribution on
G. If t = ±I is in the center of G, then Of (t) = f(t) is the delta distribution at t,
which is obviously an element of the Bernstein center of G.

Suppose T is a maximal torus of G. Fix Haar measures on G and T , and by
consequence, a G-invariant measure on G/T . Suppose t ∈ T reg is a regular element
of T . Set,

ITf (t) := Of (t) .



BERNSTEIN CENTER AND ORBITAL INTEGRALS 343

4.2. Let D : G→ F denote the Weyl discriminant of G = SL(2, F ). For h(a) ∈ A∅ ,
we have

D(h(a)) = (a− a−1)2.
Note that

I
A∅
f (h(a)) = I

A∅
f (h(a)−1).

Recall that by Weyl’s integration formula, the hyperbolic (or split) invariant
integral |D(h(a))|1/2F I

A∅
f (h(a)) equals

(4.2a) |D(h(a))|1/2F I
A∅
f (h(a)) = C

∫
(F×)ˆ

f̂(π(ξ)) ξ(a)dξ

where dξ is Haar measure on F̂×, π(ξ) = Ind(ξ) is the representation of G induced
from the character h(a) �→ ξ(a) of B = A∅N∅ , f̂(π(ξ)) = Θπ(f) and C is constant
(coming from the Weyl integration formula; it depends only on Haar measures,
which we have fixed). For a1, a2 ∈ F×, we have

|D(h(a1))|1/2F I
A∅
f (h(a1)) − |D(h(a2))|1/2F I

A∅
f (h(a2))

= C

∫
(F×)ˆ

f̂(π(ξ))(ξ(a1) − ξ(a2))dξ .
(4.2b)

4.3. Proposition (Hyperbolic orbital integral expansion). Let A∅ be the split
diagonal subgroup of G and t1, t2 ∈ (A∅)reg. Then, the invariant distribution which
is the difference

f �→ |D(t1)|
1
2
F I

A∅
f (t1) − |D(t2)|

1
2
F I

A∅
f (t2)

lies in the Bernstein center.

4.4. Proof of Proposition 4.3. We prove Proposition 4.3 by verifying the distribution
satisfies Criterion 3.1.5.

Proof. Recall that on connected components that are not unramified, the Plancherel
measure is constant (on each of them) with respect to Haar measure of F× (after the
obvious identifications) and functions ξ �→ ξ(ai) are regular on non-supercuspidal
components of Ω(G). Thus, Criterion 3.1.5 holds for the above distribution for
components which are not unramified. It remains to check that the criterion holds
for the unramified component.

Suppose |a1|F = |a2|F . On the unramified component the distribution (4.2b) is
represented by 0. Therefore, if |a1|F = |a2|±1

F , Criterion 3.1.5. implies the above
distribution is in Bernstein center.

Suppose now |a1|F �= |a2|±1
F . It remains to see that Criterion 3.1.5 holds for

the unramified component also in this case. On this component we identify ξ with
ξ(�F ). Therefore, we need to examine the integral

(4.4a) f �→ 1
2πi

∫
s∈C,|s|=1

f̂(s) ((sn1 + s−n1) − (sn2 + s−n2))
ds

s

for different nonnegative integers n1 and n2. Without lost of generality, we can
suppose n1 > n2. Recall that the Plancherel measure on this component is

f �→ q2F − 1
2

1
2πi

∫
|s|=1

f̂(s)
(1 − s)(1 − s−1)

(qF − s)(qF − s−1)
ds

s
+ f̂(πSt) (qF − 1) .
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Therefore, the distribution (4.4a) is represented on the unramified component as an
integration, with respect to Plancherel measure µPL restricted to {s ∈ C | |s| = 1},
against the function

r(s) : = C · ((sn1 + s−n1) − (sn2 + s−n2))
(qF − s)(qF − s−1)
(1 − s)(1 − s−1)

= C · sn2

(
n1−n2−1∑
k=0

sk

)(
n1+n2−1∑
k=0

(s−1)k
)

(qF − s)(qF − s−1),

which is a Laurent polynomial, and so is regular on C×. Since r(s) vanishes at
s = qF , the distribution (4.4a) is given as integration against r(s) on the whole
unramified component. So, we have verified Criterion 3.1.5 for the unramified
component. This completes the proof of Proposition 4.3. �

5. Elliptic orbital integrals

5.1. Reducible principal series. We first review the reducible principal series of
G = SL(2, F ) from [SS3, §3]. A unitary principal series Ind(χ) of G is irreducible
if and only if χ is precisely of order 2. Recall that characters of order 2 of F× are
canonically associated to quadratic extensions of V of F by ker(χ) ↔ NV/F (V ×).
Let V = F [

√
v] (v ∈ {εF , �F , εF�F }) be the quadratic extension of F such that

NV/F (V ×) = ker(χ). We use the mnemonic notation of sgnV to denote the non-
trivial character of F× with kernel NV/F (V ×).

Let Φ be a nontrivial additive character of F . For b ∈ F×, let Φb be the
additive character x �→ Φ(bx). Sally and Shalika [SS3, §3] single out an irreducible
component πΦb,V of Ind(sgnV ), with πΦb,V equivalent to πΦc,V if and only if b and
c belong to the same coset of NV/F (V ×) in F×.

Suppose v ∈ F×\(F×)2, and V = F [
√
v]. If t = tv(x, y) ∈ Tv, define

sgnV (t) = sgnV (y) .

We recall an important constant [SS3, A.1]:

κ(Φb, V ) := principal value of
∫
V

Φb(NV/F (x)) dx .

We have from [SS3, A.2]: Suppose b, c ∈ F×.

(i) If b/c ∈ NV/F (V ×), then κ(Φb, V ) = κ(Φc, V ).
(ii) If b/c /∈ NV/F (V ×), i.e., b and c are representatives for the two cosets of

NV/F (V ×) in F×, then κ(Φb, V ) = −κ(Φc, V ). In this case we have

Ind(χ) = πΦb,V ⊕ πΦc,V .
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The character ΘΦ,V of πΦ,V , as a locally constant function on the set of
regular semisimple elements, satisfies

ΘΦ,V (g) =



sgnV (λ)
|λ− λ−1|F if g is conjugated to h(λ) ∈ A∅ ,

κ(Φ, V ) sgnV (t)

|D(t)| 12F
if g is regular elliptic and conjugate to

t ∈ Tv ∪ Tvε2F (resp. Tv ∪ Tv�−2
F

) if F [
√
v] is

ramified (resp. unramified) extension of F ;
0 otherwise.

Let RPS (resp. RPSV ) denote the set of all irreducible subquotients of the re-
ducible unitary principal series (resp. Ind(sgnV )). For our situation that F has odd
residual characteristic, RPS has six elements.

5.2. Constants, filtrations and measures. If T is a compact Cartan subgroup
of G, define

(5.2a) κT =


qF + 1
qF

if T is unramified ,

2q−
1
2

F if T is ramified.

Suppose L/F is a finite extension. Recall that the modulus characters | |L and
| |F are related by

| |L
∣∣
F

= | |[L:F ]
F .

The normalized absolute value | |L/F on L, with respect to F , is defined as

| |L/F := | |
1

[L:F ]
L .

Clearly, | |L/F restricted to F equals | |F , and it is the unique absolute value on L
with this property. We have a canonical filtration of the units R×

L of RL: If e is
the ramification index of L/F , then for k ≥ 0,

(R×
L )k/e =


R×
L if k = 0,

{ x ∈ RL | |x− 1|L/F ≤ 1

q
k/e
F

} if k > 0 .

In particular, (R×
F )n = 1 + pnF for n ≥ 1. We transfer the filtration subgroups

(R×
F )n (resp. (R×

V ) k
e
, V = F [

√
v]), to the split torus A∅ (resp. elliptic torus Tv) as

follows:

(A∅)n := h((R×
F )n) =

{[
a 0
0 a−1

]
| a ∈ (R×

F )n

}
,

Tv, k
e

:= (R×
V ) k

e
∩ Tv .

The matrix tv(x, y) corresponds to x +
√
vy ∈ V in the above formula. Sally and

Shalika [SS1, p. 662] define

C(n)
v :=

{
Tv,n if V is unramified,
Tv,n+ 1

2
if V is ramified.
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Recall that, following Sally and Shalika [SS1], we have taken Haar measure on
additive F so that meas(RF ) = 1. For an elliptic torus Tv, set Tv,0+ to be Tv,1
(resp. Tv, 12 ) if Tv is unramified (resp. ramified). Then

meas(K ∩N∅) = 1,

meas((A∅)1) =
1
qF
,

meas(Tv,0+) =
1
qF
.

5.3. Elliptic orbital integral expansion ([SS3, Theorem 5.1]). Suppose T = Tv
is an elliptic torus of G = SL(2, F ). Denote V = F [

√
v]. Suppose h ≥ 0 and

t ∈ C
(h)
v /C

(h+1)
v . Then, for f ∈ C∞

c (G), we have

|D(t)| 12F ITf (t) =
∑
π∈SC

Θπ(t)|D(t)| 12F f̂(π)

+ ΘπSt(t)|D(t)| 12F f̂(πSt)

+
∑

π∈RPSV

1
2

Θπ(t)|D(t)| 12F f̂(π)

+
1
2
κT

∫
ξ ∈ F̂×

ξ|(A∅ )h+1 ≡ 1

f̂(π(ξ)) dξ

− qF + 1
2q2F

|D(t)| 12F
∫

ξ ∈ F̂×
ξ|(A∅ )h+1 ≡ 1

1
|Γ(ξ)|2 f̂(π(ξ)) dξ,

(5.3a)

where Θπ denotes the character of π as a locally constant function on the set of
regular semisimple elements.

5.4. Remarks. (i) In the third line of (5.3a) we can replace the sum over RPSV
by the sum over RPS because the other characters in RPS vanish on t.

(ii) Observe that the Fourier transform of the orbital integral at an elliptic
element t on a non-supercuspidal connected component of Ω(G), which is
regular (i.e., ξ

∣∣
h(R×)

�= ξ−1
∣∣
h(R×)

, or a supercuspidal connected component,
is given by integration against a constant with respect to the Plancherel
measure. Since constants are regular functions, they automatically satisfy
Criterion 3.1.5. Thus, to verify whether a linear combination of elliptic
orbital integrals belongs to the Bernstein center, it is sufficient to verify
Criterion 3.1.5 on the two irregular connected components only. We now
analyze these two components.
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(iii) Note that ΘπSt(t) = −1, so the measure on the unramified Bernstein com-
ponent is

−|D(t)| 12F
{
δSt +

1
2
qF + 1
q2F

1
|Γ(ξ)|2 dξ

}
+

1
2
κT dξ

=
−|D(t)| 12F
qF − 1

{
(qF − 1)δSt +

1
2
q2F − 1
q2F

1
|Γ(ξ)|2 dξ

}
+

1
2
κT dξ ,

(5.4a)

The term (qF−1)δSt+ 1
2
q2F −1

q2F

1
|Γ(ξ)|2 dξ is obviously the Plancherel measure

on this component.
(iv) We analyze now the part of the Fourier transform measure of elliptic orbital

integral supported in the ramified irregular component. In (5.3a), we see
the contributions to the measure are from lines 3, 4 and 5. For the latter
two, the contribution is an integration against a multiple of the Plancherel
measure. In particular, these contributions satisfy Criterion 3.1.5. Consider
the contribution from the line 3. Recall that V is the quadratic extension
obtained by adjoining the eigenvalues of t to F . The character value of an
irreducible subrepresentation of a reducible unitary principal series repre-
sentation is nonzero at t precisely when that subrepresentation occurs as
a subrepresentation in Ind(sgnV ). Let πΦ,V and πΦ′,V be the two com-
ponents of Ind(sgnV ). The Fourier Transform measure of the distribution
f �→ |D(t)| 12F ITf (t) on the union of the two irreducible subrepresentations of
Ind(sgnV ) is

(5.4b)
sgnV (t)

2
{ κΦ,V δπΦ,V + κΦ′,V δπΦ′,V } .

5.5. Corollary. Suppose T is an elliptic torus of G, t1, t2 ∈ T reg and O(t1) and
O(t2) have the same asymptotic behavior at infinity. Then, the invariant distribu-
tion, which is the difference

(5.5a) f �→ |D(t1)|
1
2
F I

T
f (t1) − |D(t2)|

1
2
F I

T
f (t2),

lies in the Bernstein center.

Proof. We need to analyze the Fourier transform measure of (5.5a). By remark
(5.4)(ii), we need to consider only the two irregular components. Consider first the
unramified connected component. From remark (5.4)(iii), we see that the terms
1
2κT of (5.4a) cancel and so leave a multiple of the Plancherel measure. Thus,
Criterion 3.1.5 is verified for the unramified Bernstein component. Note we have
not used the hypothesis that O(t1) and O(t2) are asymptotic.

Consider now the ramified irregular component. Suppose that t1 and t2 have the
same asymptotic behavior at infinity, i.e., they have the same set of asymptotically
close unipotent orbits.

Suppose first that T = Tv is a ramified torus (then V = F [
√
v]). Then the

asymptotic unipotent orbits to t1 = tv(x1, y1) are O(n(y1)) and O(n(−vy1)). Fur-
ther, asymptotic unipotent orbits to t2 = tv(x2, y2) are O(n(y2)) and O(n(−vy2)).
We have two possibilities. The first is that O(n(y1)) = O(n(y2)), which implies
that y1/y2 ∈ (F×)2. Now clearly sgnV (t1) = sgnV (t2). Therefore, the terms
(5.4b) cancel. So we have verified Criterion 3.1.5. This shows that the distri-
bution (5.5a) is in the Bernstein center. Suppose now O(n(−vy1)) = O(n(y2)).
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Then, −vy1/y2 ∈ (F×)2. Since
√
v is in V , and thus sgnV (−v) = 1, we conclude

sgnV (t1) = sgnV (t2), and by the same argument as above we see the distribution
(5.5a) is in the Bernstein center.

Consider now the case when T = Tv is an unramified torus. The asymptotic
unipotent orbits to t1 = tv(x1, y1) are O(n(y1)) and O(n(εF y1)), and the asymptotic
unipotent orbits to t2 = tv(x2, y2) are O(n(y2)) and O(n(εF y2)). Of these two
possibilities, the first O(n(y1)) = O(n(y2)) implies that y1/y2 ∈ (F×)2, which in
turn means sgnV (t1) = sgnV (t2). From this, we deduce, as above, the distribution
(5.5a) is in the Bernstein center. The remaining case is O(n(εF y1)) = O(n(y2)).
Thus, εF y1/y2 ∈ (F×)2. We know that εF is in the norm group of V , so sgnV (t1) =
sgnV (t2), and the claim follows. The proof is now complete. �

6. Unipotent orbital integrals

6.1. Constants. Suppose V is a quadratic extension of F and T = Tv is an elliptic
torus of G = SL(2, F ) associated to V . Define

κV = κT (see (5.2a)) .

If an irreducible constituent π of a reducible unitary principal series is parametrized
by Φ = Φ1 and V as in Section 5, let

κ(π) = κ(Φ, V ) .

Shalika, in his thesis [Sh] attaches to each nontrivial character ψ of the norm
one elements of V and Φ, an irreducible supercuspidal representation

π = π(Φ, ψ, V ).

Denote by SCV the set of these classes in SC, and set κ(π) = κ(Φ, V ) also in this
case.

6.2. Unipotent orbital integral expansion ([SS3, Theorem 7.1]). For ζ ∈
F×/(F×)2, let Λζ denote the orbital integral over the conjugacy class of the unipo-
tent element n(ζ). Then, for f ∈ C∞

c (G), we have

4
qF

qF − 1
Λζ(f) =

∑
V

2
κV

sgnV (ζ)
∑

π∈SCV

κ(π) f̂(π)

+
∑
V

1
κV

sgnV (ζ)
∑

π∈RPSV

κ(π) f̂(π)

+
∫

ξ∈F̂×

Θπ(ξ)(f) dξ.

6.3. Corollary.

qF
qF − 1

∑
ζ∈F×/(F×)2

Λζ(f) =
∫

ξ∈F̂×

Θπ(ξ)(f) dξ.
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Proof. Since

4
qF

qF − 1

∑
ζ∈F×/(F×)2

Λζ(f) =
∑
V

2
κV

( ∑
ζ∈F×/(F×)2

sgnV (ζ)
) ∑
π∈SCV

κ(π) f̂(π)

+
∑
V

1
κV

( ∑
ζ∈F×/(F×)2

sgnV (ζ)
) ∑
π∈RPSV

κ(π) f̂(π)

+ 4
∫

ξ∈F̂×

Θπ(ξ)(f) dξ,

the corollary follows immediately using
∑

ζ∈F×/(F×)2
sgnV (ζ) = 0. �

6.4. Corollary. Let C be the constant of (4.2a). Suppose t ∈ A∅ is regular. Then,
the invariant distribution

f �→ |D(t)| 12 IA∅
f (t) − C

qF
qF − 1

∑
ζ∈F×/(F×)2

Λζ(f)

lies in the Bernstein center.

Proof. This follows from the split orbital integral expansion from Section 4, the
above corollary and Criterion 3.1.5. �

Consider an elliptic torus Tv with v as in (2.5.3a). Let E = F [
√
v] andNE/F (E×)

= (F×)2 ∪ β(F×)2. If E is unramified (resp. ramified), we can take β = εF (resp.
β = −v). The regular element

tv(α, ζ) =
[
α ζ
vζ α

]
∈ Tv

is asymptotic to the two unipotent orbits of

n(ζ) =
[
1 ζ
0 1

]
and n(βζ) =

[
1 βζ
0 1

]
.

6.5. Corollary. With the above notation, the orbit of t = tv(α, ζ) is asymptotic to
the two unipotent classes of n(ζ) and n(βζ), and the invariant distribution

(6.5a) f �→ |D(t)| 12 ITf (t) − κE
qF

qF − 1
{ Λζ(f) + Λβζ(f) }

lies in the Bernstein center.
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Proof. Set X := {1, β}. Note that sgnV (ζ) + sgnV (βζ) = 0 for any quadratic
extension V/F different from E. Therefore, we have

qF
qF − 1

∑
ψ∈X

Λψζ(f) =
∑
V

1
2κV

(∑
ψ∈X

sgnV (ψζ)
) ∑
π∈SCV

κ(π) f̂(π)

+
∑
V

1
4κV

(∑
ψ∈X

sgnV (ψζ)
) ∑
π∈RPSV

κ(π) f̂(π)

+
1
2

∫
ξ∈F̂×

Θπ(ξ)(f) dξ

=
sgnE(ζ)
κE

{ ∑
π∈SCE

κ(π) f̂(π) +
1
2

∑
π∈RPSE

κ(π) f̂(π)

}

+
1
2

∫
ξ∈F̂×

Θπ(ξ)(f) dξ.

Thus

κE
qF

qF − 1

∑
ψ∈NE/F (E×)/(F×)2

Λψ(f)

= sgnE(ζ)

{ ∑
π∈SCE

κ(π) f̂(π) +
1
2

∑
π∈RPSE

κ(π) f̂(π)

}
+

κE
2

∫
ξ∈F̂×

Θπ(ξ)(f) dξ.

From the above formula and (5.4a), we see that on the unramified connected com-
ponent, Criterion 3.1.5 holds for the linear combination (6.5a). By Remark (5.4)(iv)
we see that Criterion 3.1.5 holds on irregular ramified components. The remaining
components obviously satisfy Criterion 3.1.5. This completes the proof. �

7. A geometric proof

7.1. In this section we give an alternative proof to some of our results that certain
differences of normalized orbital integrals belong to the Bernstein center. Our
alternative proof is elegant and it is intriguing whether it can be extrapolated in
some form to higher rank groups. This section is based on joint work with Dan
Barbasch.

7.2. Invariant forms. Let a, b, c, d : G→ F be the four coordinates of a matrix
in G = SL(2, F ), so

g =
[
a(g) b(g)
c(g) d(g)

]
and ad− bc ≡ 1 on G .

Let da, db, dc, and dd be the differentials of a, b, c, and d respectively. It is an
elementary calculation that

ω3 = da ∧ db ∧ dc
defines, up to nonzero scalar multiple, the unique left and right translation G-
invariant 3-form on G. Furthermore,

(7.2a) −db ∧ dc
a− d

=
da ∧ db

b
=

da ∧ dc
c

.
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We deduce that (7.2a) defines a global 2-form ω2 onG. The form ω2 is Ad-invariant.
Its restriction to a regular conjugacy class O yields a G-invariant measure on O. For
C a compact measurable set in O, let measO(C) denote its measure with respect to
ω2. Note also, that since a+ d : G→ F is the trace, we have

db ∧ dc
a− d

=
db ∧ dc

2a− trace
=

db ∧ dc
trace − 2d

.

7.3. Suppose O1 and O2 are two conjugacy classes in G = SL(2, F ) with the same
asymptotic behavior at infinity, and J is an open compact subgroup of G. It is a
consequence of Propositions 2.3.3, 2.4.3, and 2.5.5 that if g ∈ G is sufficiently large,
i.e., a Cartan decomposition g = k1ak2 has a large, then

gJ ∩ O1 and gJ ∩ O2.

are both empty or both nonempty.

7.4. Proposition. Suppose O1 and O2 are two conjugacy classes in G = SL(2, F )
with the same asymptotic behavior at infinity. Then, for g ∈ G sufficiently large

measO1(gJ ∩ O1) = measO2(gJ ∩ O2).

Proof. As remarked immediately above, we may assume g is sufficiently large so
that gJ ∩ O1 and gJ ∩ O2 are both empty or both nonempty. The assertion is
trivially true if the two intersections are empty, so we assume the two intersections
are nonempty. Also, it is enough to prove the proposition in the special case when
J = Km is an arbitrary m-th congruence subgroup of K = SL(2,RF ). We can
choose local coordinates for the two intersections gKm∩O1 and gKm∩O2 according
to the following rule: Select the coordinate of g with the largest size. It is elementary
that for any gk ∈ gKm the same coordinate is also the largest coordinate of gk.
We consider the obvious four possible cases.

(i) |b(g)|F is maximal. Write k ∈ Km as

k =
[
A B
C D

]
=
[
1 + α�m β�m

γ�m 1 + δ�m

]
,

where α, β, γ, δ ∈ RF , and

gk =
[
a(g) b(g)
c(g) d(g)

] [
A B
C D

]
=
[
a(g)A+ b(g)C a(g)B + b(g)D
c(g)A+ d(g)C c(g)B + d(g)D

]
.

Let c1,1 = a(gk), c1,2 = b(gk), c2,1 = c(gk), c2,2 = d(gk) denote the entries
of the product. The assumption that b(g) has the largest absolute value
means

c1,1 = a(g)A+ b(g)C = a(g)(1 + α�m) + b(g)γ�m

= a(g) + (a(g)α+ b(g)γ)�m

∈ a(g) + b(g)pm .

Similarly,
c1,2 = a(g)B + b(g)D = a(g)β�m + b(g)(1 + δ�m)

= b(g) + (b(g)δ + a(g)β)�m

∈ b(g) + b(g)pm .

Set C1,1 := a(g) + b(g)pm and C1,2 := b(g) + b(g)pm. As we vary k ∈ Km,
both γ and δ run over RF independently of one another. It follows that in
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the coset gKm, we can allow the (1,1) and (1,2) coordinates of an element
to run over the two cosets C1,1 and C1,2 independently of one another.
From this, we deduce that the cartesian product C1,1 ×C1,2 can be used as
coordinates for the intersection of each conjugacy class Oi with gKm. The
G-invariant measure is given by

da ∧ db
|b|F .

The value |b|F is constant on the parametrization set. We conclude the
G-invariant measure of the two intersections gJ ∩O1 and gJ ∩O2 are equal.

(ii) |a(g)|F is maximal. Let tr(Oi) denote the trace of any element of Oi. We
use the assumption that the intersection gKm ∩ Oi is nonempty. Suppose
gk ∈ gKm ∩ Oi. Then a(gk) + d(gk) = tr(Oi). The assumption that g is
sufficiently large and the (1,1) coordinate of g has maximal size means d(g)
must have the same absolute value as a(g). If we combine these facts with
det(g) = 1, we deduce a(g), b(g), c(g), and d(g) all have the same absolute
value. Thus, this case reduces to the previous case (i).

The remaining two cases when |c(g)|F and |d(g)|F are maximal can obviously be
treated in similar fashions to (i) and (ii) respectively. This completes the proof. �

7.5. Corollary. Suppose T is a maximal torus of G = SL(2, F ) and γ1, γ2 ∈
T reg such that their conjugacy classes O(γ1) and O(γ2) have the same asymptotic
behavior at infinity. Then, the G-invariant distribution which is the difference

(7.5a) f ∈ C∞
c (G) : f �→ |D(γ1)|

1
2
F I

T
f (γ1) − |D(γ1)|

1
2
F I

T
f (γ2)

is essentially compact and so belongs to the Bernstein center.

Proof. Let µ1, µ2 be the G-invariant measures on O(γ1) and O(γ2) obtained from
the 2-form ω2 of (7.2a), and let D be the distribution

(7.5b) f ∈ C∞
c (G) : f �→

∫
O(γ1)

f dµ1 −
∫

O(γ2)

f dµ2 .

Claim: D is essentially compact.
To prove the claim, it is sufficient to prove the special situation when f is the

characteristic function of an arbitrary congruence subgroup Km. We have

D � 1Km(x) =
∫

O(γ1)

λx(1Km) dµ1 −
∫

O(γ2)

λx(1Km) dµ2

=
∫

O(γ1)

1xKm dµ1 −
∫

O(γ2)

1xKm dµ2

= meas(O(γ1) ∩ xKm) − meas(O(γ2) ∩ xKm)

By Proposition 7.4., the last line is zero provided x is sufficiently large. This proves
the claim and thus D belongs to the Bernstein center. The corollary follows when
we observe the distributions of (7.5a) and (7.5b) are the same. �
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