Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

Harish-Chandra modules for Yangians


Authors: Vyacheslav Futorny, Alexander Molev and Serge Ovsienko
Journal: Represent. Theory 9 (2005), 426-454
MSC (2000): Primary 17B35, 81R10, 17B67
DOI: https://doi.org/10.1090/S1088-4165-05-00195-0
Published electronically: June 2, 2005
MathSciNet review: 2142818
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study Harish-Chandra representations of the Yangian $\mathrm{Y}(\mathfrak{gl}_2)$ with respect to a natural maximal commutative subalgebra. We prove an analogue of the Kostant theorem showing that the restricted Yangian $\mathrm{Y}_p(\mathfrak{gl}_2)$ is a free module over the corresponding subalgebra $\Gamma$ and show that every character of $\Gamma$ defines a finite number of irreducible Harish-Chandra modules over $\mathrm{Y}_p(\mathfrak{gl}_2)$. We study the categories of generic Harish-Chandra modules, describe their simple modules and indecomposable modules in tame blocks.


References [Enhancements On Off] (What's this?)

  • [A] Auslander M., Representation theory of artin algebras II, Comm. Algebra 2 (1974), 269-310. MR 0349747 (50:2240)
  • [BB] Bavula V., Bekkert V., Indecomposable representations of generalized Weyl algebras, Comm. Algebra, 28 (2000), 5067-5100. MR 1785490 (2002f:16059)
  • [CP] Chari V., Pressley A., Yangians and $R$-matrices, L'Enseign. Math. 36 (1990), 267-302. MR 1096420 (92h:17009)
  • [C1] Cherednik I.V., A new interpretation of Gel'fand-Tzetlin bases, Duke Math. J. 54 (1987), 563-577. MR 0899405 (88k:17005)
  • [C2] Cherednik I.V., Quantum groups as hidden symmetries of classic representation theory, in ``Differential Geometric Methods in Physics" (A. I. Solomon, Ed.), World Scientific, Singapore, 1989, pp. 47-54. MR 1124414 (92h:17004)
  • [Di] Dixmier J., Algèbres Enveloppantes, Paris, Gauthier-Villars, 1974. MR 0498737 (58:16803a)
  • [D1] Drinfeld V.G., Hopf algebras and the quantum Yang-Baxter equation, Soviet Math. Dokl. 32 (1985), 254-258.
  • [D2] Drinfeld V.G., A new realization of Yangians and quantized affine algebras, Soviet Math. Dokl. 36 (1988), 212-216. MR 0914215 (88j:17020)
  • [Dr] Drozd Yu.A. Tame and wild matrix problem, Springer LNM 832 (1980), 242-258. MR 0607157 (83b:16024)
  • [DFO1] Drozd Yu.A., Ovsienko S.A., Futorny V.M. On Gel'fand-Zetlin modules, Suppl. Rend. Circ. Mat. Palermo, 26 (1991), 143-147. MR 1151899 (93b:17021)
  • [DFO2] Drozd Yu.A., Ovsienko S.A., Futorny V.M., Harish-Chandra subalgebras and Gel'fand-Zetlin modules, in: ``Finite-dimensional algebras and related topics", NATO Adv. Sci. Inst. Ser. C., Math. and Phys. Sci., 424, (1994), 79-93. MR 1308982 (95k:17016)
  • [FO] Futorny V., Ovsienko S., Kostant theorem for special filtered algebras, Bull. London Math. Soc. 37 (2005), 187-199. MR 2119018
  • [GR] Gabriel P., Roiter A.V., Representations of finite-dimensional algebras, in ``Encyclopedia of the Mathematical Sciences", Vol. 73, Algebra VIII, (A. I. Kostrikin and I. R. Shafarevich, Eds), Springer-Verlag, Berlin, Heidelberg, New York, 1992. MR 1239446 (94h:16001a)
  • [IK] Izergin A.G., Korepin V.E., A lattice model related to the nonlinear Schrödinger equation, Sov. Phys. Dokl. 26 (1981) 653-654.
  • [K] Kostant B. Lie groups representations on polynomial rings. Amer. J. Math. 85, (1963), 327-404. MR 0158024 (28:1252)
  • [KS] Kulish P., Sklyanin E., Quantum spectral transform method: recent developments, in ``Integrable Quantum Field Theories", Lecture Notes in Phys. 151 Springer, Berlin-Heidelberg, 1982, pp. 61-119. MR 0671263 (84m:81114)
  • [M1] Molev A.I., Gelfand-Tsetlin basis for representations of Yangians, Lett. Math. Phys. 30 (1994), 53-60. MR 1259196 (94m:17018)
  • [M2] Molev A.I., Casimir elements for certain polynomial current Lie algebras, in ``Group 21, Physical Applications and Mathematical Aspects of Geometry, Groups, and Algebras," Vol. 1, (H.-D. Doebner, W. Scherer, P. Nattermann, Eds). World Scientific, Singapore, 1997, 172-176.
  • [M3] Molev A. I., Irreducibility criterion for tensor products of Yangian evaluation modules, Duke Math. J., 112 (2002), 307-341. MR 1894363 (2003c:17027)
  • [NT] Nazarov M., Tarasov V., Representations of Yangians with Gelfand-Zetlin bases, J. Reine Angew. Math. 496 (1998), 181-212. MR 1605817 (99c:17030)
  • [Ov] Ovsienko S., Finiteness statements for Gelfand-Tsetlin modules, In: Algebraic structures and their applications, Math. Inst., Kiev, 2002.
  • [TF] Takhtajan L.A., Faddeev L.D., Quantum inverse scattering method and the Heisenberg $XYZ$-model, Russian Math. Surv. 34 (1979), no. 5, 11-68.
  • [T1] Tarasov V., Structure of quantum $L$-operators for the $R$-matrix of the $XXZ$-model, Theor. Math. Phys. 61 (1984), 1065-1071.
  • [T2] Tarasov V., Irreducible monodromy matrices for the $R$-matrix of the $XXZ$-model, and lattice local quantum Hamiltonians, Theor. Math. Phys. 63 (1985), 440-454.

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 17B35, 81R10, 17B67

Retrieve articles in all journals with MSC (2000): 17B35, 81R10, 17B67


Additional Information

Vyacheslav Futorny
Affiliation: Institute of Mathematics and Statistics, University of São Paulo, Caixa Postal 66281-CEP 05315-970, São Paulo, Brazil
Email: futorny@ime.usp.br

Alexander Molev
Affiliation: School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
Email: alexm@maths.usyd.edu.au

Serge Ovsienko
Affiliation: Faculty of Mechanics and Mathematics, Kiev Taras Shevchenko University, Vladimirskaya 64, 00133, Kiev, Ukraine
Email: ovsienko@sita.kiev.ua

DOI: https://doi.org/10.1090/S1088-4165-05-00195-0
Received by editor(s): May 25, 2003
Published electronically: June 2, 2005
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society