Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

Crystal structures arising from representations of $ GL(m\vert n)$


Author: Jonathan Kujawa
Journal: Represent. Theory 10 (2006), 49-85
MSC (2000): Primary 20C20, 05E99; Secondary 17B10
DOI: https://doi.org/10.1090/S1088-4165-06-00219-6
Published electronically: February 16, 2006
MathSciNet review: 2209849
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper provides results on the modular representation theory of the supergroup $ GL(m\vert n).$ Working over a field of arbitrary characteristic, we prove that the explicit combinatorics of certain crystal graphs describe the representation theory of a modular analogue of the Bernstein-Gelfand-Gelfand category $ \mathcal{O}$. In particular, we obtain a linkage principle and describe the effect of certain translation functors on irreducible supermodules. Furthermore, our approach accounts for the fact that $ GL(m\vert n)$ has non-conjugate Borel subgroups and we show how Serganova's odd reflections give rise to canonical crystal isomorphisms.


References [Enhancements On Off] (What's this?)

  • 1. J. Brundan, Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra $ \mathfrak{gl}(m\vert n)$, J. Amer. Math. Soc. 16 (2003), 185-231. MR 1937204 (2003k:17007)
  • 2. J. Brundan, Modular branching rules and the Mullineux map for Hecke algebras of type $ A$, Proc. London Math. Soc. (3) 77 (1998), 551-581. MR 1643413 (2000d:20007)
  • 3. J. Brundan and A. Kleshchev, On translation functors for general linear and symmetric groups, Proc. London Math. Soc. (3) 80 (2000), 75-106. MR 1719176 (2000j:20080)
  • 4. J. Brundan and J. Kujawa, A new proof of the Mullineux conjecture, J. Alg. Combin. 16 (2003), 13-39. MR 2002217 (2004j:20017)
  • 5. R. Carter and G. Lusztig, On the modular representations of the general linear and symmetric groups, Math. Z. 136 (1974), 193-242. MR 0354887 (50:7364)
  • 6. V.K. Dobrev and V.B. Petkova, On the group-theoretical approach to extended conformal supersymmetry: function space realizations and invariant differential operators, Fortschr. Phys. 35 (1987) 537-572. MR 0905398 (88j:22015)
  • 7. J. Hong and S. Kang, Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, vol. 42, Amer. Math. Soc., 2002. MR 1881971 (2002m:17012)
  • 8. J. C. Jantzen, Representations of algebraic groups, Academic Press, 1987. MR 0899071 (89c:20001)
  • 9. V. Kac, Infinite dimensional Lie algebras, third edition, Cambridge University Press, 1990. MR 1104219 (92k:17038)
  • 10. V. Kac, Lie superalgebras, Advances Math. 26 (1977), 8-96. MR 0486011 (58:5803)
  • 11. M. Kashiwara, On crystal bases, Proc. Canadian Math. Soc. 16 (1995), 155-196. MR 1357199 (97a:17016)
  • 12. A. Kleshchev, Branching rules for modular representations of symmetric groups. III, J. London Math. Soc. 54 (1996), 25-38. MR 1395065 (96m:20019c)
  • 13. A. Kleshchev, Branching rules for modular representations of symmetric groups. II, J. Reine Angew. Math. 459 (1995), 163-212. MR 1319521 (96m:20019b)
  • 14. A. Kleshchev, Branching rules for modular representations of symmetric groups. I, J. Alg. 178 (1995), 493-511. MR 1359899 (96m:20019a)
  • 15. J. Kujawa, The representation theory of the supergroup $ GL(m\vert n)$, Ph.D. thesis, University of Oregon, 2003.
  • 16. D.A. Leites, Introduction to the theory of supermanifolds, Russian Math. Surveys 35 (1980), 1-64.
  • 17. V. Serganova, Kazhdan-Lusztig polynomials and character formula for the Lie superalgebra $ \mathfrak{gl}(m\vert n)$, Selecta Math. 2 (1996), 607-651. MR 1443186 (98f:17007)
  • 18. V. Serganova, Kazhdan-Lusztig polynomials for the Lie superalgebra $ GL(m\vert n)$, Adv. Sov. Math. 16 (1993), 151-165. MR 1237837 (94k:17005)
  • 19. V. Serganova, Automorphisms of complex simple Lie superalgebras and affine Kac-Moody algebras, Ph.D. thesis, Leningrad State University, 1988.
  • 20. A. Sergeev, Enveloping algebra centre for Lie superalgebras GL and Q, Ph.D. thesis, Moscow State University, Moscow, 1987.
  • 21. A. Sergeev, The invariant polynomials on simple Lie superalgebras, Represent. Theory 3 (1999), 250-280. MR 1714627 (2000k:17012)
  • 22. R. Steinberg, Lectures on Chevalley groups, Yale University, 1968. MR 0466335 (57:6215)

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 20C20, 05E99, 17B10

Retrieve articles in all journals with MSC (2000): 20C20, 05E99, 17B10


Additional Information

Jonathan Kujawa
Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602
Email: kujawa@math.uga.edu

DOI: https://doi.org/10.1090/S1088-4165-06-00219-6
Received by editor(s): November 17, 2003
Received by editor(s) in revised form: January 3, 2006
Published electronically: February 16, 2006
Additional Notes: Research was supported in part by NSF grant DMS-0402916
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society