Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165



Categorical Langlands correspondence for $ \operatorname{SO}_{n,1}(\mathbb{R})$

Author: Immanuel Halupczok
Journal: Represent. Theory 10 (2006), 223-253
MSC (2000): Primary 22E50, 20G05, 32S60; Secondary 11S37
Published electronically: April 6, 2006
MathSciNet review: 2219113
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In the context of the local Langlands philosopy for $ \mathbb{R}$, Adams, Barbasch and Vogan describe a bijection between the simple Harish-Chandra modules for a real reductive group $ G(\mathbb{R})$ and the space of ``complete geometric parameters''--a space of equivariant local systems on a variety on which the Langlands-dual of $ G(\mathbb{R})$ acts. By a conjecture of Soergel, this bijection can be enhanced to an equivalence of categories. In this article, that conjecture is proven in the case where $ G(\mathbb{R})$ is a generalized Lorentz group $ \operatorname{SO}_{n,1}(\mathbb{R})$.

References [Enhancements On Off] (What's this?)

  • 1. Jeffrey Adams, Dan Barbasch, and David A. Vogan, Jr., The Langlands classification and irreducible characters for real reductive groups, Progress in Mathematics, vol. 104, Birkhäuser Boston Inc., Boston, MA, 1992. MR 1162533 (93j:22001)
  • 2. Alexander Beilinson, Victor Ginzburg, and Wolfgang Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), no. 2, 473-527. MR 1322847 (96k:17010)
  • 3. Joseph Bernstein and Valery Lunts, Equivariant sheaves and functors, Lecture Notes in Mathematics, vol. 1578, Springer-Verlag, Berlin, 1994. MR 1299527 (95k:55012)
  • 4. Fokko du Cloux, Combinatorics for the representation theory of real reductive groups, Notes from the AIM workshop, Palo Alto, July 2005.
  • 5. Mark Goresky, Robert Kottwitz, and Robert MacPherson, Equivariant cohomology, koszul duality, and the localization theorem, Invent. Math. 131 (1998), 25-83. MR 1489894 (99c:55009)
  • 6. Mark Goresky and Robert MacPherson, Intersection homology II, Invent. Math. 72 (1983), 77-129. MR 0696691 (84i:57012)
  • 7. Immanuel Halupczok, Kategorielle Langlands-Korrespondenz für die verallgemeinerten Lorentz-Gruppen, Ph.D. thesis, University of Freiburg, Germany, 2005,
  • 8. Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1990. MR 1074006 (92a:58132)
  • 9. S. M. Khoroshkin, Irreducible representations of Lorentz groups, Funct. Anal. Appl. 15 (1981), 114-122.
  • 10. George Lusztig and David A. Vogan, Jr., Singularities of closures of $ k$-orbits on flag manifolds, Invent. Math. 71 (1983), 365-379. MR 0689649 (84h:14060)
  • 11. R. W. Richardson and T. A. Springer, Combinatorics and geometry of $ k$-orbits on the flag manifold, Contemporary Mathematics 153 (1993), 109-142. MR 1247501 (94m:14065)
  • 12. Wolfgang Soergel, Langlands' philosophy and Koszul duality, Algebra--representation theory (Constanta, 2000), NATO Sci. Ser. II Math. Phys. Chem., vol. 28, Kluwer Acad. Publ., Dordrecht, 2001, pp. 379-414. MR 1858045 (2002j:22019)
  • 13. T. A. Springer, Linear algebraic groups, Progress in Mathematics, vol. 9, Birkhäuser Boston, Mass., 1981. MR 0632835 (84i:20002)
  • 14. -, The classification of involutions of simple algebraic groups, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), no. 3, 655-670. MR 0927604 (89b:20096)
  • 15. David A. Vogan, Jr., Irreducible characters of semisimple lie groups III, Invent. Math. 71 (1983), 381-417. MR 0689650 (84h:22036)

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 22E50, 20G05, 32S60, 11S37

Retrieve articles in all journals with MSC (2000): 22E50, 20G05, 32S60, 11S37

Additional Information

Immanuel Halupczok
Affiliation: Albert-Ludwigs-Universität Freiburg, Mathematisches Institut, Eckerstraße 1, 79104 Freiburg, Germany

Received by editor(s): June 5, 2005
Received by editor(s) in revised form: February 6, 2006
Published electronically: April 6, 2006
Additional Notes: The author was supported in part by the “Landesgraduiertenförderung Baden-Württemberg”. He also wishes to thank Wolfgang Soergel for making this article possible
Article copyright: © Copyright 2006 Immanuel Halupczok

American Mathematical Society