Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

Unitary $ \mathcal I$-spherical representations for split $ p$-adic $ \mathbf E_6$


Author: Dan Ciubotaru
Journal: Represent. Theory 10 (2006), 435-480
MSC (2000): Primary 22E50
DOI: https://doi.org/10.1090/S1088-4165-06-00301-3
Published electronically: October 25, 2006
MathSciNet review: 2266699
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The determination of the Iwahori-spherical unitary representations for split $ p$-adic groups can be reduced to the classification of unitary representations with real infinitesimal character for associated graded Hecke algebras. We determine the unitary modules with real infinitesimal character for the graded Hecke algebra of type $ E_6$.


References [Enhancements On Off] (What's this?)

  • [Al] D. Alvis, Induce/Restrict matrices for exceptional Weyl groups, preprint.
  • [Ba] D. Barbasch, Unitary spherical spectrum for split classical groups, preprint, http://www.math.cornell.edu/$ \wti{ }$barbasch.
  • [BC1] D. Barbasch, D. Ciubotaru, Spherical unitary principal series, Pure Appl. Math. Q. 1 (2005), no. 4, 755-789. MR 2200999
  • [BC2] D. Barbasch, D. Ciubotaru, Spherical unitary dual for split groups of exceptional type, preprint.
  • [BM1] D. Barbasch, A. Moy, A unitarity criterion for p-adic groups, Invent. Math. 98 (1989), no. 1, 19-37. MR 1010153 (90m:22038)
  • [BM2] D. Barbasch, A. Moy, Reduction to real infinitesimal character in affine Hecke algebras, J. Amer. Math. Soc. 6 (1993), no. 3, 611-635. MR 1186959 (93k:22015)
  • [BM3] D. Barbasch, A. Moy, Unitary spherical spectrum for p-adic classical groups, Acta Appl. Math. 44 (1996), 1-37. MR 1407038 (98k:22067)
  • [BV] D. Barbasch, D.A. Vogan, Jr., Unipotent representations of complex semisimple groups Ann. of Math. (2) 121 (1985), no. 1, 41-110. MR 0782556 (86i:22031)
  • [Bo] A. Borel, Admissible representations of a semi-simple group over a local field with fixed vectors under an Iwahori subgroup, Invent. Math. 35 (1976), 233-259. MR 0444849 (56:3196)
  • [BS] W.M. Beynon, N. Spaltenstein, Green functions of finite Chevalley groups of type $ E_n$ $ (n=6,7,8)$, J. Algebra 88 (1984), no. 2, 584-614. MR 0747534 (85k:20136)
  • [BW] A. Borel, N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Mathematics Studies, 94, Princeton University Press, Princeton, NJ, 1980. MR 0554917 (83c:22018)
  • [Car] R.W. Carter, Finite groups of Lie type. Conjugacy classes and complex characters, Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons, New York, 1985. MR 0794307 (87d:20060)
  • [Cas] W. Casselman, A new nonunitarity argument for p-adic representations, J. Fac. Sci. Tokyo Univ., sect IA Math. 28 (1981), no. 3, 907-928. MR 0656064 (84e:22018)
  • [Ci] D. Ciubotaru, The unitary $ \mathbf I$-spherical unitary dual of the split group of type F4, Represent. Theory 9 (2005), 94-137. MR 2123126 (2005k:22022)
  • [Ev] S. Evens, The Langlands classification for graded Hecke algebras, Proc. Amer. Math. Soc. 124 (1996), no. 4, 1285-1290. MR 1322921 (96g:22022)
  • [Fr] J.S. Frame, The classes and representations of the groups of $ 27$ lines and $ 28$ bitangents, Ann. Mat. Pura Appl. (4) 32 (1951), 83-119. MR 0047038 (13:817i)
  • [KL] D. Kazhdan, G. Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), no. 1, 153-215. MR 0862716 (88d:11121)
  • [Lu1] G. Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), no. 3, 599-635. MR 0991016 (90e:16049)
  • [Lu2] G. Lusztig, Cuspidal local systems and graded algebras I, Inst. Hautes Études Sci. Publ. Math. no. 67 (1988), 145-202. MR 0972345 (90e:22029)
  • [Lu3] G. Lusztig, Cuspidal local systems and graded algebras II, Representations of groups (Banff, AB, 1994), Amer. Math. Soc., Providence, RI, 1995, 217-275. MR 1357201 (96m:22038)
  • [Lu4] G. Lusztig, Cuspidal local systems and graded algebras III, Represent. Theory 6 (2002), 202-242. MR 1927954 (2004k:20010)
  • [Mu] G. Muic, The unitary dual of $ p$-adic $ G_2$, Duke Math. J. 90 (1997), no.3, 465-493. MR 1480543 (98k:22073)
  • [Sp1] T.A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173-207. MR 0442103 (56:491)
  • [Sp2] T.A. Springer, A construction of representations of Weyl groups, Invent. Math. 44 (1978), no. 3, 279-293. MR 0491988 (58:11154)
  • [Ta] M. Tadic, Classification of unitary representations in irreducible representations of the general linear group (nonarchimedean case), Ann. Scient. Ec. Norm. Sup. 19 (1986), 335-382. MR 0870688 (88b:22021)
  • [Vo1] D.A. Vogan, Jr., Unitarizability of certain series of representations, Ann. of Math. (2) 120 (1984), no. 1, 141-187. MR 0750719 (86h:22028)
  • [Vo2] D.A. Vogan, Jr., The unitary dual of $ {\rm GL}(n)$ over an Archimedean field, Invent. Math. 83 (1986), no. 3, 449-505. MR 0827363 (87i:22042)

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 22E50

Retrieve articles in all journals with MSC (2000): 22E50


Additional Information

Dan Ciubotaru
Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Email: ciubo@math.mit.edu

DOI: https://doi.org/10.1090/S1088-4165-06-00301-3
Received by editor(s): November 15, 2005
Received by editor(s) in revised form: August 23, 2006
Published electronically: October 25, 2006
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society