Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

Nilpotent orbits of linear and cyclic quivers and Kazhdan-Lusztig polynomials of type A


Author: Anthony Henderson
Journal: Represent. Theory 11 (2007), 95-121
MSC (2000): Primary 17B37; Secondary 05E15, 20C08
DOI: https://doi.org/10.1090/S1088-4165-07-00317-2
Published electronically: June 26, 2007
MathSciNet review: 2320806
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The intersection cohomologies of closures of nilpotent orbits of linear (respectively, cyclic) quivers are known to be described by Kazhdan-Lusztig polynomials for the symmetric group (respectively, the affine symmetric group). We explain how to simplify this description using a combinatorial cancellation procedure, and we derive some consequences for representation theory.


References [Enhancements On Off] (What's this?)

  • 1. T. ARAKAWA, Drinfeld functor and finite-dimensional representations of Yangian, Commun. Math. Phys., 205 (1999), pp. 1-18. MR 1706920 (2001c:17011)
  • 2. S. ARIKI, On the decomposition number of the Hecke algebra of $ G(m,1,n)$, J. Math. Kyoto Univ., 36 (1996), pp. 789-808. MR 1443748 (98h:20012)
  • 3. S. BILLEY AND G. WARRINGTON, Maximal singular loci of Schubert varieties in $ SL(n)/B$, Trans. Amer. Math. Soc., 355 (2003), pp. 3915-3945. MR 1990570 (2004f:14071)
  • 4. A. BJÖRNER AND F. BRENTI, Affine permutations of type $ A$, Electron. J. Combin., 3 (1996).
    Research Paper 18. MR 1392503 (97f:05018)
  • 5. V. CHARI AND A. PRESSLEY, A Guide to Quantum Groups, Cambridge Univ. Press, 1994. MR 1300632 (95j:17010)
  • 6. N. CHRISS AND V. GINZBURG, Representation Theory and Complex Geometry, Birkhäuser Boston, 1997. MR 1433132 (98i:22021)
  • 7. V. G. DRINFELD, Degenerate affine Hecke algebras and Yangians, Funct. Anal. Appl., 20 (1986), pp. 67-70. MR 831053 (87m:22044)
  • 8. A. HENDERSON, Two-row nilpotent orbits of cyclic quivers, Math. Z., 243 (2003), pp. 127-143. MR 1953052 (2003k:16025)
  • 9. J. E. HUMPHREYS, Reflection Groups and Coxeter Groups, Cambridge Univ. Press, 1990. MR 1066460 (92h:20002)
  • 10. B. LECLERC, J.-Y. THIBON, AND E. VASSEROT, Zelevinsky's involution at roots of unity, J. Reine Angew. Math., 513 (1999), pp. 33-51. MR 1713318 (2001f:20011)
  • 11. G. LUSZTIG, Affine Hecke algebras and their graded version, J. Amer. Math. Soc., 2 (1989), pp. 599-635. MR 991016 (90e:16049)
  • 12. -, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc., 3 (1990), pp. 447-498. MR 1035415 (90m:17023)
  • 13. -, Cuspidal local systems and graded Hecke algebras II, in Representations of Groups (Banff, AB, 1994), no. 16 in CMS Conf. Proc., Amer. Math. Soc., 1995, pp. 217-275. MR 1357201 (96m:22038)
  • 14. -, Aperiodicity in quantum affine $ \mathfrak{gl}_n$, Asian J. Math., 3 (1999), pp. 147-177. MR 1701926 (2000i:17027)
  • 15. -, Bases in equivariant $ K$-theory II, Represent. Theory, 3 (1999), pp. 281-353. MR 1714628 (2000h:20085)
  • 16. M. NAZAROV AND V. TARASOV, Representations of Yangians with Gelfand-Zetlin bases, J. Reine Angew. Math., 496 (1998), pp. 181-212. MR 1605817 (99c:17030)
  • 17. R. ORELLANA AND A. RAM, Affine braids, Markov traces and the category $ \mathcal{O}$, to appear in the Proceedings of the International Congress 2004, held at Tata Institute of Fundamental Research.
  • 18. A. RAM, Skew shape representations are irreducible, in Combinatorial and Geometric Representation Theory (Seoul, 2001), no. 325 in Contemp. Math., Amer. Math. Soc., 2003, pp. 161-189. MR 1988991 (2004f:20014)
  • 19. J. D. ROGAWSKI, On modules over the Hecke algebra of a $ p$-adic group, Invent. Math., 79 (1985), pp. 443-465. MR 782228 (86j:22028)
  • 20. W. SOERGEL, Kazhdan-Lusztig polynomials and a combinatoric for tilting modules, Represent. Theory, 1 (1997), pp. 83-114. MR 1444322 (98d:17026)
  • 21. T. SUZUKI, Rogawski's conjecture on the Jantzen filtration for the degenerate affine Hecke algebra of type $ A$, Represent. Theory, 2 (1998), pp. 393-409. MR 1651408 (2000b:22016)
  • 22. M. VARAGNOLO AND E. VASSEROT, On the decomposition matrices of the quantized Schur algebra, Duke Math. J., 100 (1999), pp. 267-297. MR 1722955 (2001c:17029)
  • 23. E. VASSEROT, Affine quantum groups and equivariant $ K$-Theory, Transform. Groups, 3 (1998), pp. 269-299. MR 1640675 (99j:19007)
  • 24. A. ZELEVINSKY, Induced representations of reductive $ p$-adic groups II, Ann. Sci. Ecole Norm. Sup., 13 (1980), pp. 165-210. MR 584084 (83g:22012)
  • 25. -, $ p$-adic analogue of the Kazhdan-Lusztig hypothesis, Funct. Anal. Appl., 15 (1981), pp. 83-92.
  • 26. -, Two remarks on graded nilpotent classes, Russian Math. Surveys, 40 (1985), pp. 249-250. MR 783619 (86e:14027)

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 17B37, 05E15, 20C08

Retrieve articles in all journals with MSC (2000): 17B37, 05E15, 20C08


Additional Information

Anthony Henderson
Affiliation: School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
Email: anthonyh@maths.usyd.edu.au

DOI: https://doi.org/10.1090/S1088-4165-07-00317-2
Received by editor(s): January 10, 2005
Published electronically: June 26, 2007
Additional Notes: This work was supported by Australian Research Council grant DP0344185
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society