The rational Schur algebra

Authors:
Richard Dipper and Stephen Doty

Journal:
Represent. Theory **12** (2008), 58-82

MSC (2000):
Primary 16G99; Secondary 20G05

DOI:
https://doi.org/10.1090/S1088-4165-08-00303-8

Published electronically:
February 12, 2008

MathSciNet review:
2375596

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We extend the family of classical Schur algebras in type , which determine the polynomial representation theory of general linear groups over an infinite field, to a larger family, the rational Schur algebras, which determine the rational representation theory of general linear groups over an infinite field. This makes it possible to study the rational representation theory of such general linear groups directly through finite dimensional algebras. We show that rational Schur algebras are quasihereditary over any field, and thus have finite global dimension.

We obtain explicit cellular bases of a rational Schur algebra by a descent from a certain ordinary Schur algebra. We also obtain a description, by generators and relations, of the rational Schur algebras in characteristic zero.

**[BLM]**A. A. Beilinson, G. Lusztig, and R. MacPherson,*A geometric setting for the quantum deformation of 𝐺𝐿_{𝑛}*, Duke Math. J.**61**(1990), no. 2, 655–677. MR**1074310**, https://doi.org/10.1215/S0012-7094-90-06124-1**[B]**Georgia Benkart, Manish Chakrabarti, Thomas Halverson, Robert Leduc, Chanyoung Lee, and Jeffrey Stroomer,*Tensor product representations of general linear groups and their connections with Brauer algebras*, J. Algebra**166**(1994), no. 3, 529–567. MR**1280591**, https://doi.org/10.1006/jabr.1994.1166**[Br]**Richard Brauer,*On algebras which are connected with the semisimple continuous groups*, Ann. of Math. (2)**38**(1937), no. 4, 857–872. MR**1503378**, https://doi.org/10.2307/1968843**[CPS]**E. Cline, B. Parshall, and L. Scott,*Finite-dimensional algebras and highest weight categories*, J. Reine Angew. Math.**391**(1988), 85–99. MR**961165****[DDH]**Richard Dipper, Stephen Doty, and Jun Hu,*Brauer algebras, symplectic Schur algebras and Schur-Weyl duality*, Trans. Amer. Math. Soc.**360**(2008), no. 1, 189–213. MR**2342000**, https://doi.org/10.1090/S0002-9947-07-04179-7**[Do]**S. Donkin,*On Schur algebras and related algebras. I*, J. Algebra**104**(1986), no. 2, 310–328. MR**866778**, https://doi.org/10.1016/0021-8693(86)90218-8**[D1]**Stephen Doty,*Presenting generalized 𝑞-Schur algebras*, Represent. Theory**7**(2003), 196–213. MR**1990659**, https://doi.org/10.1090/S1088-4165-03-00176-6**[D2]**S.R. Doty, New versions of Schur-Weyl duality, in*Finite Groups 2003*, Proceedings of the Gainesville Conference on Finite Groups, de Gruyter, Berlin, New York 2004.**[DEH]**Stephen Doty, Karin Erdmann, and Anne Henke,*A generic algebra associated to certain Hecke algebras*, J. Algebra**278**(2004), no. 2, 502–531. MR**2071650**, https://doi.org/10.1016/j.jalgebra.2004.04.007**[DG1]**Stephen Doty and Anthony Giaquinto,*Presenting Schur algebras as quotients of the universal enveloping algebra of 𝔤𝔩₂*, Algebr. Represent. Theory**7**(2004), no. 1, 1–17. MR**2046950**, https://doi.org/10.1023/B:ALGE.0000019386.04383.f9**[DG2]**Stephen Doty and Anthony Giaquinto,*Presenting Schur algebras*, Int. Math. Res. Not.**36**(2002), 1907–1944. MR**1920169**, https://doi.org/10.1155/S1073792802201026**[Du]**Jie Du,*Kazhdan-Lusztig bases and isomorphism theorems for 𝑞-Schur algebras*, Kazhdan-Lusztig theory and related topics (Chicago, IL, 1989) Contemp. Math., vol. 139, Amer. Math. Soc., Providence, RI, 1992, pp. 121–140. MR**1197832**, https://doi.org/10.1090/conm/139/1197832**[E]**Karin Erdmann,*Decomposition numbers for symmetric groups and composition factors of Weyl modules*, J. Algebra**180**(1996), no. 1, 316–320. MR**1375581**, https://doi.org/10.1006/jabr.1996.0067**[GL]**J. J. Graham and G. I. Lehrer,*Cellular algebras*, Invent. Math.**123**(1996), no. 1, 1–34. MR**1376244**, https://doi.org/10.1007/BF01232365**[G1]**J. A. Green,*Locally finite representations*, J. Algebra**41**(1976), no. 1, 137–171. MR**0412221**, https://doi.org/10.1016/0021-8693(76)90173-3**[G2]**James A. Green,*Polynomial representations of 𝐺𝐿_{𝑛}*, Lecture Notes in Mathematics, vol. 830, Springer-Verlag, Berlin-New York, 1980. MR**606556****[G3]**J. A. Green,*Combinatorics and the Schur algebra*, J. Pure Appl. Algebra**88**(1993), no. 1-3, 89–106. MR**1233316**, https://doi.org/10.1016/0022-4049(93)90015-L**[RMG1]**R. M. Green,*A straightening formula for quantized codeterminants*, Comm. Algebra**24**(1996), no. 9, 2887–2913. MR**1396863**, https://doi.org/10.1080/00927879608825720**[RMG2]**R.M. Green, -Schur algebras and quantized enveloping algebras,*Ph.D. thesis*, University of Warwick, 1995.**[GM]**R. M. Green and P. P. Martin,*Constructing cell data for diagram algebras*, J. Pure Appl. Algebra**209**(2007), no. 2, 551–569. MR**2293327**, https://doi.org/10.1016/j.jpaa.2006.07.016**[Jam]**Gordon D. James,*The decomposition of tensors over fields of prime characteristic*, Math. Z.**172**(1980), no. 2, 161–178. MR**580858**, https://doi.org/10.1007/BF01182401**[Jan]**Jens Carsten Jantzen,*Representations of algebraic groups*, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR**2015057****[KL]**David Kazhdan and George Lusztig,*Representations of Coxeter groups and Hecke algebras*, Invent. Math.**53**(1979), no. 2, 165–184. MR**560412**, https://doi.org/10.1007/BF01390031**[K]**Kazuhiko Koike,*On the decomposition of tensor products of the representations of the classical groups: by means of the universal characters*, Adv. Math.**74**(1989), no. 1, 57–86. MR**991410**, https://doi.org/10.1016/0001-8708(89)90004-2**[KX]**Steffen König and Changchang Xi,*On the structure of cellular algebras*, Algebras and modules, II (Geiranger, 1996) CMS Conf. Proc., vol. 24, Amer. Math. Soc., Providence, RI, 1998, pp. 365–386. MR**1648638****[Lu]**George Lusztig,*Introduction to quantum groups*, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR**1227098****[M1]**G. E. Murphy,*On the representation theory of the symmetric groups and associated Hecke algebras*, J. Algebra**152**(1992), no. 2, 492–513. MR**1194316**, https://doi.org/10.1016/0021-8693(92)90045-N**[M2]**G. E. Murphy,*The representations of Hecke algebras of type 𝐴_{𝑛}*, J. Algebra**173**(1995), no. 1, 97–121. MR**1327362**, https://doi.org/10.1006/jabr.1995.1079**[St]**John R. Stembridge,*Rational tableaux and the tensor algebra of 𝑔𝑙_{𝑛}*, J. Combin. Theory Ser. A**46**(1987), no. 1, 79–120. MR**899903**, https://doi.org/10.1016/0097-3165(87)90077-X**[Wo]**David J. Woodcock,*Straightening codeterminants*, J. Pure Appl. Algebra**88**(1993), no. 1-3, 317–320. MR**1233333**, https://doi.org/10.1016/0022-4049(93)90032-O

Retrieve articles in *Representation Theory of the American Mathematical Society*
with MSC (2000):
16G99,
20G05

Retrieve articles in all journals with MSC (2000): 16G99, 20G05

Additional Information

**Richard Dipper**

Affiliation:
Mathematisches Institut B, Universität Stuttgart, Pfaffenwaldring 57, Stuttgart, 70569, Germany

Email:
Richard.Dipper@mathematik.uni-stuttgart.de

**Stephen Doty**

Affiliation:
Mathematics and Statistics, Loyola University Chicago, Chicago, Illinois 60626

Email:
doty@math.luc.edu

DOI:
https://doi.org/10.1090/S1088-4165-08-00303-8

Keywords:
Schur algebras,
finite dimensional algebras,
quasihereditary algebras,
general linear groups

Received by editor(s):
November 28, 2005

Received by editor(s) in revised form:
October 23, 2007

Published electronically:
February 12, 2008

Additional Notes:
This work was partially supported by DFG project DI 531/5-2 and NSA grant DOD MDA904-03-1-00.

Article copyright:
© Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.