Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165



Centers of degenerate cyclotomic Hecke algebras and parabolic category $ \mathcal O$

Author: Jonathan Brundan
Journal: Represent. Theory 12 (2008), 236-259
MSC (2000): Primary 20C08, 17B20
Published electronically: July 29, 2008
MathSciNet review: 2424964
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the center of each degenerate cyclotomic Hecke algebra associated to the complex reflection group of type $ B_d(l)$ consists of symmetric polynomials in its commuting generators. The classification of the blocks of the degenerate cyclotomic Hecke algebras is an easy consequence. We then apply Schur-Weyl duality for higher levels to deduce analogous results for parabolic category $ \mathcal O$ for the Lie algebra $ \mathfrak{gl}_n(\mathbb{C})$.

References [Enhancements On Off] (What's this?)

  • [AS] T. Arakawa and T. Suzuki, Duality between $ \mathfrak{sl}_n(\mathbb{C})$ and the degenerate affine Hecke algebra, J. Algebra 209 (1998), 288-304. MR 1652134 (99h:17005)
  • [AMR] S. Ariki, A. Mathas and H. Rui, Cyclotomic Nazarov-Wenzl algebras, Nagoya Math. J. 182 (2006), 47-134. MR 2235339 (2007d:20005)
  • [BG] K. Brown and K. Goodearl, Lectures on algebraic quantum groups, Birkhäuser, 2002. MR 1898492 (2003f:16067)
  • [B1] J. Brundan, Dual canonical bases and Kazhdan-Lusztig polynomials, J. Algebra 306 (2006), 17-46. MR 2271570 (2007m:05229)
  • [B2] J. Brundan, Symmetric functions, parabolic category $ \mathcal O$ and the Springer fiber, Duke Math. J. 143 (2008), 41-79.
  • [BK1] J. Brundan and A. Kleshchev, Hecke-Clifford superalgebras, crystals of type $ A_{2\ell}^{(2)}$ and modular branching rules for $ \widehat{S}_n$, Represent. Theory 5 (2001), 317-403. MR 1870595 (2002j:17024)
  • [BK2] J. Brundan and A. Kleshchev, Representation theory of symmetric groups and their double covers, in: Groups, combinatorics and geometry (Durham, 2001), pp. 31-53, World Scientific, 2003. MR 1994959 (2004i:20016)
  • [BK3] J. Brundan and A. Kleshchev, Schur-Weyl duality for higher levels, to appear in Selecta Math.; math.RT/0605217.
  • [CL] R. Carter and G. Lusztig, On the modular representations of the general linear and symmetric groups, Math. Z. 136 (1974), 193-242. MR 0354887 (50:7364)
  • [D] V. Drinfeld, Degenerate affine Hecke algebras and Yangians, Func. Anal. Appl. 20 (1986), 56-58. MR 831053 (87m:22044)
  • [E] D. Eisenbud, Commutative algebra with a view towards algebraic geometry, GTM 150, Springer, 1994. MR 1322960 (97a:13001)
  • [ES] T. Enright and B. Shelton, Categories of highest weight modules: Applications to classical Hermitian symmetric pairs, Mem. Amer. Math. Soc. 67 (1987), no. 367. MR 888703 (88f:22052)
  • [G] I. Grojnowski, Blocks of the cyclotomic Hecke algebra, preprint, 1999.
  • [I] R. Irving, Projective modules in the category $ \mathcal O_S$: Self-duality, Trans. Amer. Math. Soc. 291 (1985), 701-732. MR 800259 (87i:17005)
  • [J] G. James, The representation theory of the symmetric groups, Lecture Notes in Mathematics, no. 682, Springer, 1978. MR 513828 (80g:20019)
  • [JM] G. James and A. Mathas, The Jantzen sum formula for cyclotomic $ q$-Schur algebras. Trans. Amer. Math. Soc. 352 (2000), 5381-5404. MR 1665333 (2001b:16017)
  • [Ja] J. Jantzen, Kontravariante Formen aud induzierten Darstellungen halbeinfachen Lie-Algebren, Math. Ann. 226 (1977), 53-65. MR 0439902 (55:12783)
  • [Ju] A. Jucys, Symmetric polynomials and the center of the symmetric group ring, Report Math. Phys. 5 (1974), 107-112. MR 0419576 (54:7597)
  • [Kh] M. Khovanov, Crossingless matchings and the cohomology of $ (n,n)$ Springer varieties, Commun. Contemp. Math. 6 (2004), 561-577. MR 2078414 (2005g:14090)
  • [K] A. Kleshchev, Linear and Projective Representations of Symmetric Groups, Cambridge University Press, Cambridge, 2005. MR 2165457 (2007b:20022)
  • [L] G. Lusztig, Cuspidal local systems and graded Hecke algebras. I, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 145-202. MR 972345 (90e:22029)
  • [LM] S. Lyle and A. Mathas, Blocks of cyclotomic Hecke algebras, Adv. Math 216 (2007), 854-878. MR 2351381
  • [Mac] I. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, second edition, OUP, 1995. MR 1354144 (96h:05207)
  • [MS] V. Mazorchuk and C. Stroppel, Projective-injective modules, Serre functors and symmetric algebras, J. Reine Angew. Math. 616 (2008), 131-165. MR 2369489
  • [M] G. Murphy, The idempotents of the symmetric group and Nakayama's conjecture, J. Algebra 81 (1983), 258-265. MR 696137 (84k:20007)
  • [P] K. Platt, Classifying the representation type of infinitesimal blocks of category $ \mathcal O_S$, Ph.D. thesis, University of Georgia, 2008.
  • [R] O. Ruff, Centers of cyclotomic Sergeev superalgebras, preprint, 2008.
  • [S] C. Stroppel, Perverse sheaves on Grassmannians, Springer fibres and Khovanov homolog, to appear in Compositio Math.; math.RT/0608234.
  • [W] W. Wang, Vertex algebras and the class algebras of wreath products, Proc. London Math. Soc. 88 (2004), 381-404. MR 2032512 (2005a:17029)

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 20C08, 17B20

Retrieve articles in all journals with MSC (2000): 20C08, 17B20

Additional Information

Jonathan Brundan
Affiliation: Department of Mathematics, University of Oregon, Eugene, Oregon 97403

Received by editor(s): August 15, 2006
Received by editor(s) in revised form: June 25, 2008
Published electronically: July 29, 2008
Additional Notes: Research supported in part by NSF grant no. DMS-0654147.
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society