Whittaker modules for generalized Weyl algebras

Authors:
Georgia Benkart and Matthew Ondrus

Journal:
Represent. Theory **13** (2009), 141-164

MSC (2000):
Primary 17B10; Secondary 16D60

DOI:
https://doi.org/10.1090/S1088-4165-09-00347-1

Published electronically:
April 16, 2009

MathSciNet review:
2497458

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate Whittaker modules for generalized Weyl algebras, a class of associative algebras which includes the quantum plane, Weyl algebras, the universal enveloping algebra of and of Heisenberg Lie algebras, Smith's generalizations of , various quantum analogues of these algebras, and many others. We show that the Whittaker modules of the generalized Weyl algebra are in bijection with the -stable left ideals of . We determine the annihilator of the cyclic generator of . We also describe the annihilator ideal under certain assumptions that hold for most of the examples mentioned above. As one special case, we recover Kostant's well-known results on Whittaker modules and their associated annihilators for .

**[AP]**D. Arnal and G. Pinczon,*On algebraically irreducible representations of the Lie algebra*, J. Math. Phys.**15**(1974), 350-359. MR**0357527 (50:9995)****[B1]**V.V. Bavula,*Generalized Weyl algebras, kernel and tensor-simple algebras, their simple modules*, Proc. of the Sixth Intern. Conf. on Representations of Algebras (Ottawa, ON, 1992), 83-107, Carleton-Ottawa Math. Lecture Note Ser., 14, Carleton Univ., Ottawa, ON, 1992. MR**1265277****[B2]**V.V. Bavula,*Generalized Weyl algebras and their representations*, translation in St. Petersburg Math. J.**4**(1993), 71-92. MR**1171955 (93h:16043)****[Be]**G. Benkart,*Down-up algebras and Witten's deformations of the universal enveloping algebra of*, Recent Progress in Algebra, Contemp. Math.**224**, Amer. Math. Soc. (1999), 29-45. MR**1653061 (99m:17014)****[BR]**G. Benkart and T. Roby,*Down-up algebras*, J. Algebra**209**(1998), 305-344; Addendum**213**(1999), 378. MR**1652138 (2000e:06001a)****[Bl]**R. Block,*The irreducible representations of the Lie algebra and of the Weyl algebra*, Adv. Math.**39**(1981), 69-110. MR**605353 (83c:17010)****[BK]**J. Brundan and A. Kleshchev,*Shifted Yangians and finite W-algebras*, Adv. Math.**200**(2006), 136-195. MR**2199632 (2006m:17010)****[C]**K. Christodoulopoulou, Whittaker Modules for Heisenberg and Affine Lie Algebras, Ph.D. thesis, University of Wisconsin-Madison 2007.**[DGO]**Y. Drozd, B. Guzner, and S.A. Ovsienko,*Weight modules over generalized Weyl algebras*, J. Algebra,**184**(1996), 491-504. MR**1409224 (97g:16040)****[E]**D. Eisenbud, Commutative Algebra With A View Toward Algebraic Geometry, Grad. Texts in Math. 150, Springer-Verlag, New York, 1995. MR**1322960 (97a:13001)****[JWZ]**Q. Ji, D. Wang and X. Zhou,*Finite dimensional representations of quantum groups*, East-West J. Math.**2**(2000), 201-213. MR**1825457 (2002c:17025)****[K]**B. Kostant,*On Whittaker vectors and representation theory*, Invent. Math.**48**(1978), 101-184. MR**507800 (80b:22020)****[Ku]**R. Kulkarni,*Down-up algebras and their representations*, J. Algebra**245**(2001), 431-462. MR**1863888 (2002k:16061)****[MS]**D. Miličić and W. Soergel,*The composition series of modules induced from Whittaker modules*, Comment. Math. Helv.**72**(1997), 503-520. MR**1600134 (99e:17010)****[O1]**M. Ondrus, Whittaker Modules, Central Characters, and Tensor Products for Quantum Enveloping Algebras, Ph.D. Thesis, University of Wisconsin-Madison, 2004.**[O2]**M. Ondrus,*Whittaker modules for*, J. Algebra**289**(2005), no. 1, 192-213. MR**2139098 (2006b:17027)****[R]**A. Rosenberg, Noncommutative Algebraic Geometry and Representations of Quantized Algebras, Kluwer Acad. Publ., Dordrecht, 1995. MR**1347919 (97b:14004)****[S]**S.P. Smith,*A class of algebras similar to the enveloping algebra of*, Trans. Amer. Math. Soc.**322**(1990), 285-314. MR**972706 (91b:17013)****[Sw]**R. Swan, -Theory of Finite Groups and Orders, Notes by E. G. Evans, Lecture Notes in Math. 149, Springer-Verlag, Berlin, New York, 1970. MR**0308195 (46:7310)****[T1]**X. Tang,*On Whittaker modules over a class of algebras similar to*, Front. Math. China.**2**(2007), no. 1, 127-142. MR**2289914 (2008b:17009)****[T2]**X. Tang,*Construct irreducible representations of quantum groups*, Front. Math. China.**3**(2008), no. 3, 371-397. MR**2425161**

Retrieve articles in *Representation Theory of the American Mathematical Society*
with MSC (2000):
17B10,
16D60

Retrieve articles in all journals with MSC (2000): 17B10, 16D60

Additional Information

**Georgia Benkart**

Affiliation:
Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706

Email:
benkart@math.wisc.edu

**Matthew Ondrus**

Affiliation:
Department of Mathematics, Weber State University, Ogden, Utah 84408

Email:
MattOndrus@weber.edu

DOI:
https://doi.org/10.1090/S1088-4165-09-00347-1

Received by editor(s):
March 25, 2008

Received by editor(s) in revised form:
February 9, 2009

Published electronically:
April 16, 2009

Article copyright:
© Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.